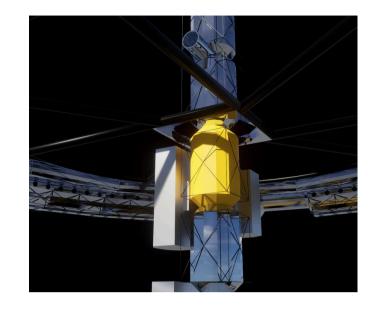


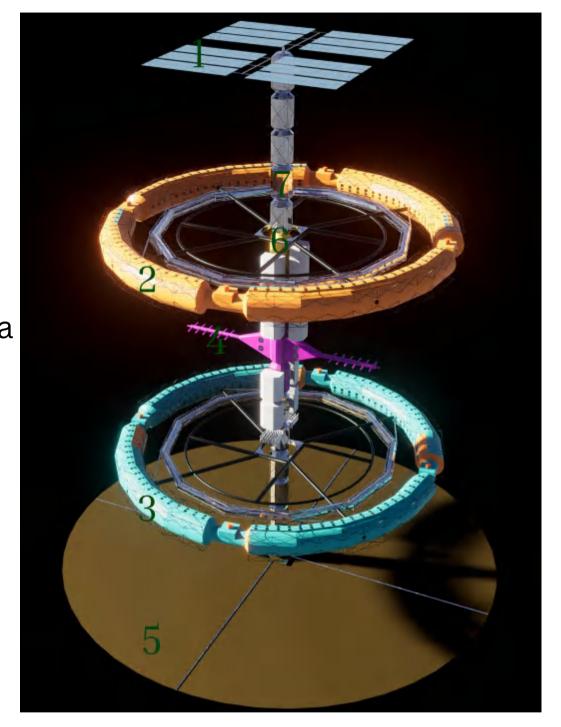
Dimensions and External Views



STRUCTURAL DESIGN

Uses of Volumes

- 1 DARK BLUE: Solar Panels
- 2 ORANGE: Residential Volume
- **3 BLUE:** Industrial / Operation Volume
- 4 PURPLE: Port
- 5 GOLDEN: Solar Sail
- 6 Yellow: Control Room
- 7 Non Rotating Recreational Volume


Figure 2.2 Control Room [By Sijia Zhou, rhino]

Design Features:

- Airlocks are located in every pressurized body along with dust mitigation facilities at each airlock. (subcontracted by Loseless Airlocks)
- Solar Sails placed on a rotational ball bearing to ensure its constant allignment with the Sun.
- RPM of rotating volumes (Rotatating in directions opposite to each other)

RPM of Residential Volume- 0.935 Rotations/Minute RPM of Industrial Volume - 0.870 Rotations/Minute

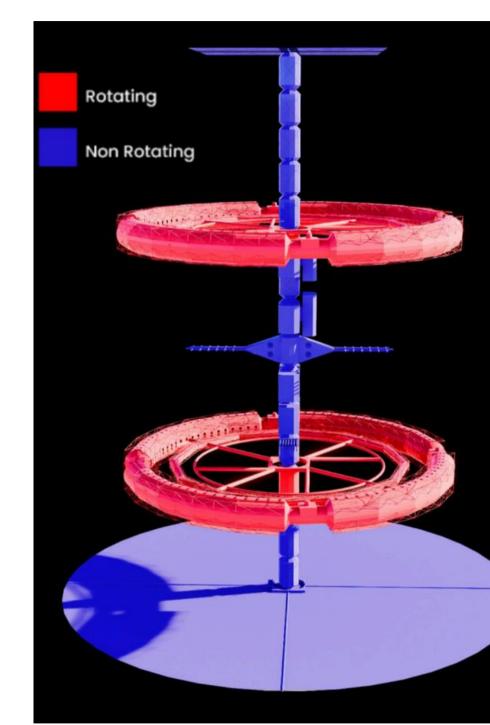


Figure 2.3 Various Volumes of the Settlement [By Sijia Zhou, rhino]

03

Rotation and Pressurization

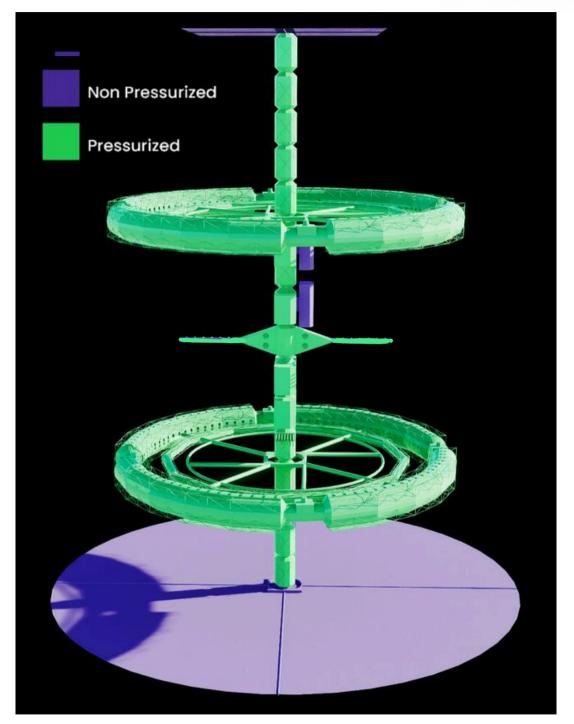

- Artificial Gravity:
 - Residential torus: **0.45g** for health benefits.
 - Industrial torus: **0.3g** for agriculture and industry light weight functioning.
- Pressurized Areas:
 - Residential, industrial torus, control center, observation deck, and docks are pressurized.
- Airlocks:
 - Used for transitioning between pressurized and non-pressurized areas. Airlocks subcontracted to Lossless Airlocks.

Figure 2.4 Rotating and Non Rotating Parts[By Sijia Zhou, rhion]

STRUCTURAL DESIGN

Figure 2.5 Pressurized and Non Presurized Parts [By Sijia Zhou, rhion]

Other Exterior Components

Port and Control Center

- Docking System:
 - Includes multiple pressurized docking ports
 - Cargo and personnel pass through an airlock to a rest area, then use an elevator to access other areas.
- Control Center:
 - Located in central axis.
 - Staff Manages Operation and Functionality

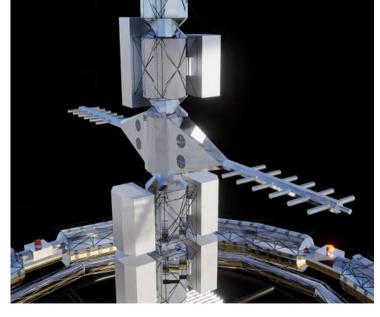


Figure 2.6 Docking System [By Sijia Zhou, rhino]

2.1.2

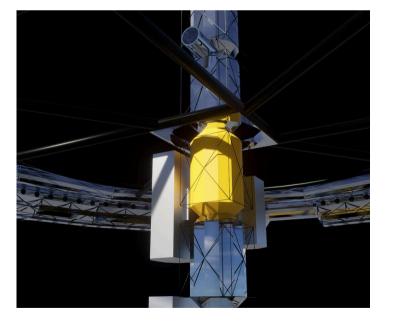
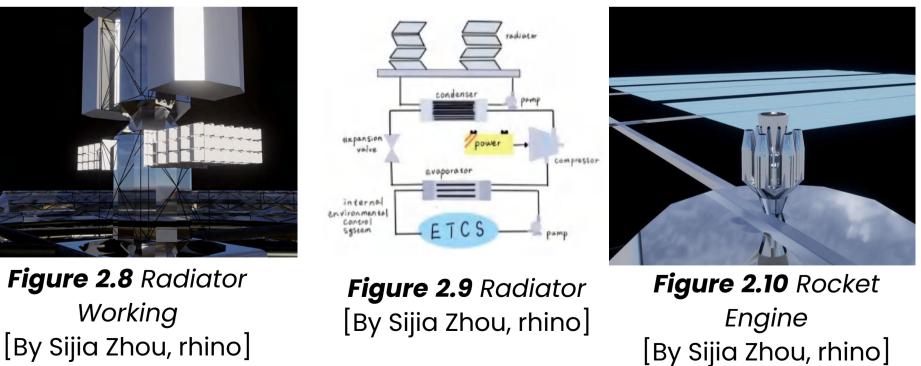
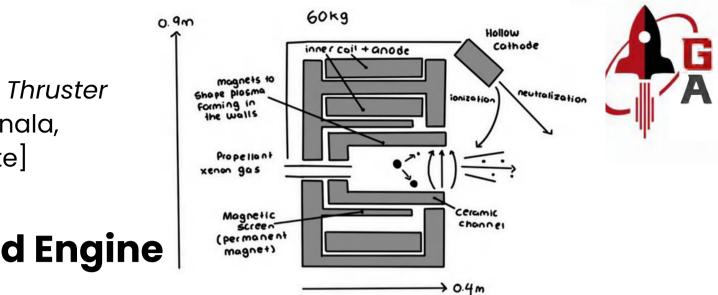



Figure 2.7 Control Centre [By Sijia Zhou, rhino]

Figure 2.11 Hall Thruster [By Iha Kotnala, Procreate]

Radiator and Engine


- Propulsion System:
- Thermal Regulation:

05

[By Sijia Zhou, rhino]

STRUCTURAL DESIGN

• Primary rocket engine and RCS thrusters for attitude control with hall effect thruster backup

• Dissipates heat from systems using water or liquid nitrogen.

Radiates heat via distributed radiators.

Other Exterior Components

Isolation of volumes & Entrence and Exits

- Airlocks:
 - Separate pressurized and non-pressurized sections.
- Residential Tori:
 - Divided into 4 segments with airlocks between them.
 - Ensures safety by isolating failures to one segment.
- Airlocks:

2.1.3

- Present between each partial quarter Torii.
- Down Surface Area Orientation and Vertical Clearance

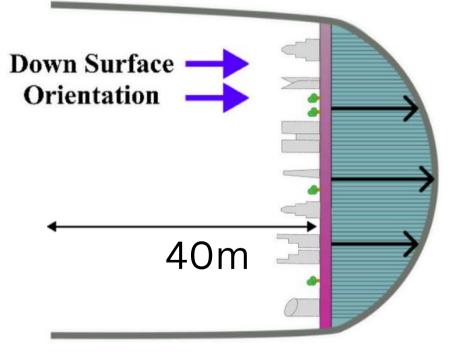
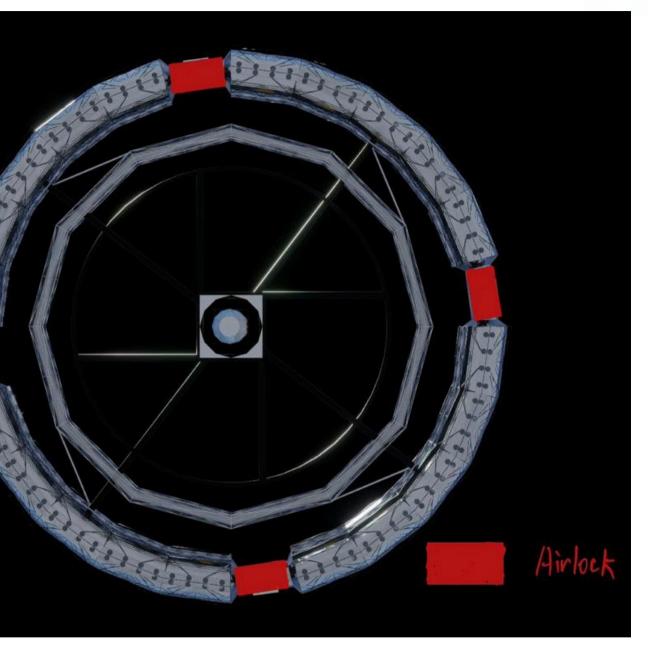



Figure 2.12 DSA Orientation and Vertical Clearance

[By Jashraaj, Kushagra on Figma]

STRUCTURAL DESIGN

Figure 2.13 Airlock Placement [By Jashraaj, Kushagra on Figma]

06

Radiation and Debris Protection Rotation Mechanisms:

- Uses ionic thrusters to generate constant tangential thrust to develop artificial gravity.
- Utilising magnetically levitated bearings of 45 teslas to prevent friction and lubrication costs. Any deviations in bearings corrected by varying strength of electromagnets.

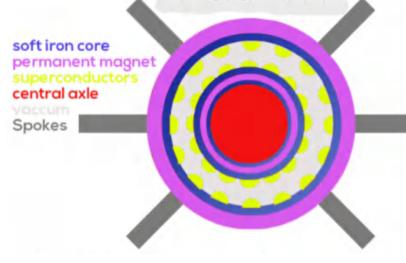


Figure 2.14 Cross Section of Maglev Bearings [Adil Azfar]

Protection

Radiation protection

- Benevectoras will be protected from radiation due to material composition ensuring radioactive ray deflection.
- Elaborated upon in 2.1.1

2.1.4

Debris and Space Junk

- Asteroid diversion bot: called the Debris-bot: • It will use electro-magnetic trays to attract and collect approaching debris
 - It will transport the debris and asteroids a safe distance away from the structures, or will divert their trajectory
- Aerogel whipple shields:
 - Aerogel can stand an impact of more than 2000 times their weight. These whipple shields will surround sensitive areas of the settlement such as spokes and absorb energy upon impact.

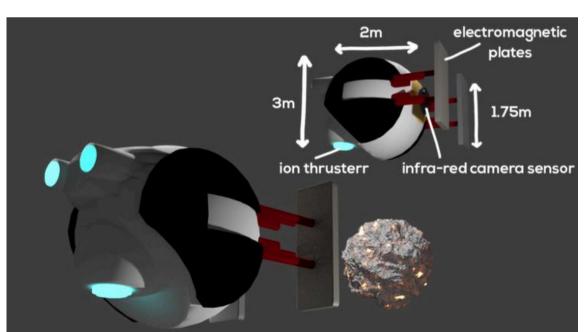


Figure 2.15 debri bot [Adil Azfar]

STRUCTURAL DESIGN

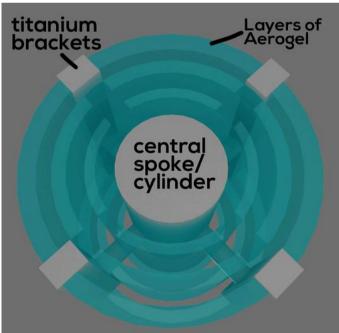


Figure 2.16 Whipple shield [By Adil Azfar]

Residential Torus

Residential Torus:

- Includes housing, commercial areas, and community services.
- Contains research centers and workspaces for permanent residents.
 - Divided into 4 communities on the downward surface.
- Vertical Clearance:
 - 40 meters.

2.2.1-2

Industrial Torus

Industrial Torus:

- Structure:
 - Three layers, each 18 meters high
- Manufacturing and Processing Area:
 - For constructing small components and routine maintenance.
 - some agricultural practice
- Assembly and Installation Area:
- For assembling and processing large-scale equipment. • Storage and Support Area:
 - Stores supplies, backup robots, and essential reserves.

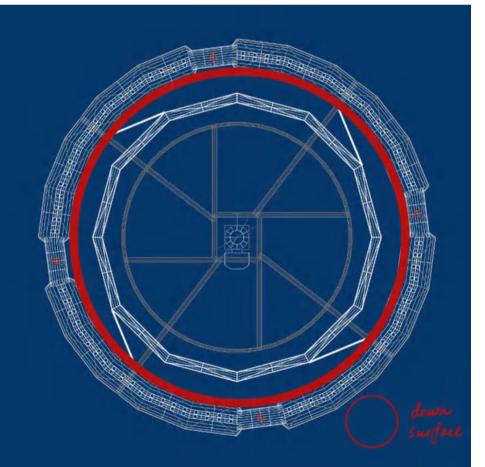
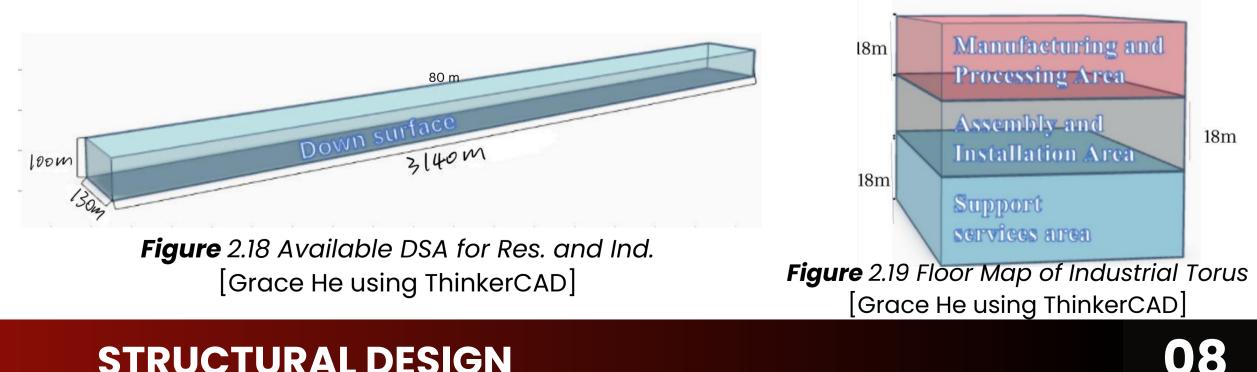
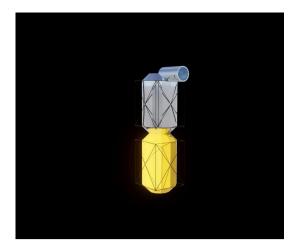



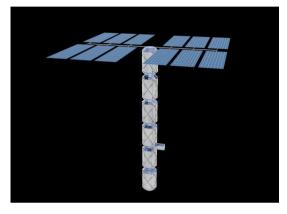
Figure 2.17 Residential DSA [Jim Chen using Notability]

STRUCTURAL DESIGN

Construction Sequence


Phase 1 – Pre Built construction shack is transported to Earth-Moon Lagrange Point 2. It is equipped with a power source, assembly area and will utilize incoming CASSSCs of materials using 3D printing, subcontracted to 3D Logistics.(***subcontracted to 3D Logistics and ElectroProtect**)

<u>Phase 2 – Jigs</u> are assembled and materials sourced. The Central Shaft is built by External Construction Bots and Jigs. Solar Panels are added on the Central Shaft.


Phase 3 - The Docks are built. Construction Shack is repurposed into the Control Center with internal rearrangement and pressurization. (Docks are subcontracted to Lossless Airlocks)

<u>Phase 4 -</u> The Industrial Volume is built. 2 Sectors (Manufacturing and Processing, Assembly and Installation) out of 3 are set up. All on-site assembly and 3-D printing is now shifted to this volume.

Phase 5 – The residential volume is set up. Both the Industrial Volume and Residential Volume begin rotating. IOC is achieved.

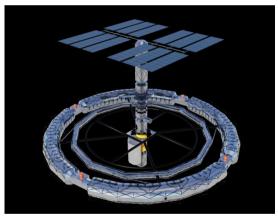
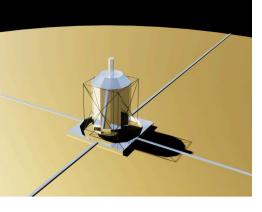


Figure 2.20-2.24 Construction Phases [Elvis Zhou using SketchApp]

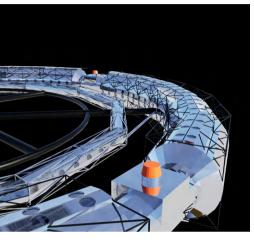
Construction Sequence

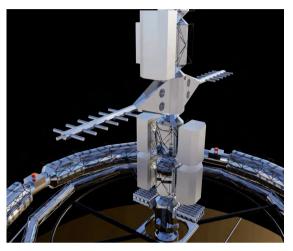
Phase 6 – The Solar Sail and Space Tugs are set up. Settlement is pushed up to Cycler orbit using propulsion from Hall and RCS thrusters and the Space Tugs.

Phase 7 – Storage volume is set up. Support equipment area within the Industrial Volume is established.


Phase 8 – Recreational 0 G Volume is set up above the residential volume. FOC is achieved.

Future Expansion


- Expansion Along Central Shaft Axis:
 - Possible to construct more tori and add modules as per needs.
- Small-Scale Expansion:
 - Use modular capsule-shaped cabins connected via docking interfaces.
- Large-Scale Expansion:
 - Additional cabins can connect to previously built cabins.



СЛ

Construction Phases

Solar Sails

- Positioned at end of Benevectoras, stowed on central axle with 4 arms. Area of 13,73,750 m^2, radius of 661.43 meters.
- Arms fold around central cylinder, contains graphene-Kapton mesh acting as Radiator and heat exchanger.
- Modular design enables specific parts of sail to be opened to vary velocity and propulsion
- Ball socket with high-torque servo motors and gyroscopes
- 45° rotation for precise adjustments.

<u>(refer auto 5.4)</u>

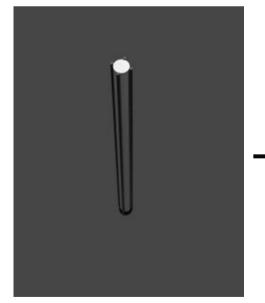


Fig 2.4.1- Stowed away Solar Sail Configuration [abdullah khan]

2.4

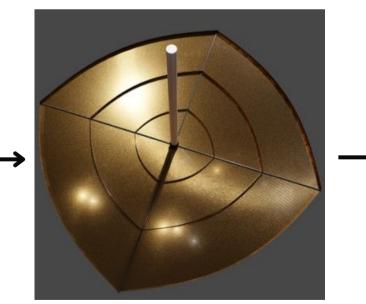


Fig 2.4.2- opened Solar Sail Configuration [abdullah khan]

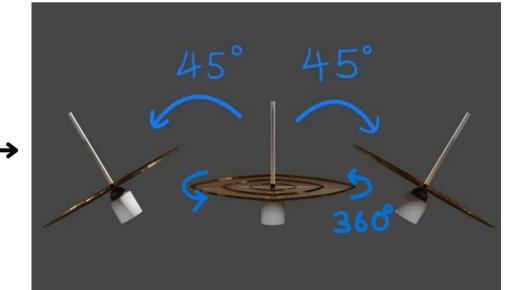


Fig 2.4.3- visualization of freedom of rotation [abdullah khan]

STRUCTURAL DESIGN

Space Tug

- The
- 10 m/s^2

• Cylinder with radius of 2.5m

Flat circular interface provided a few metres front of the solar sail.

Space tug latches the on to electromagnetic actuators at the end of extended central axle of the solar sail

• The tug uses ion thrusters to propel itself and provides a constant thrust and acceleration of

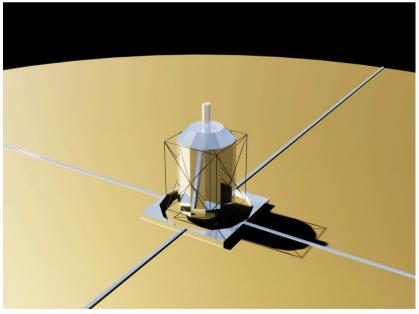
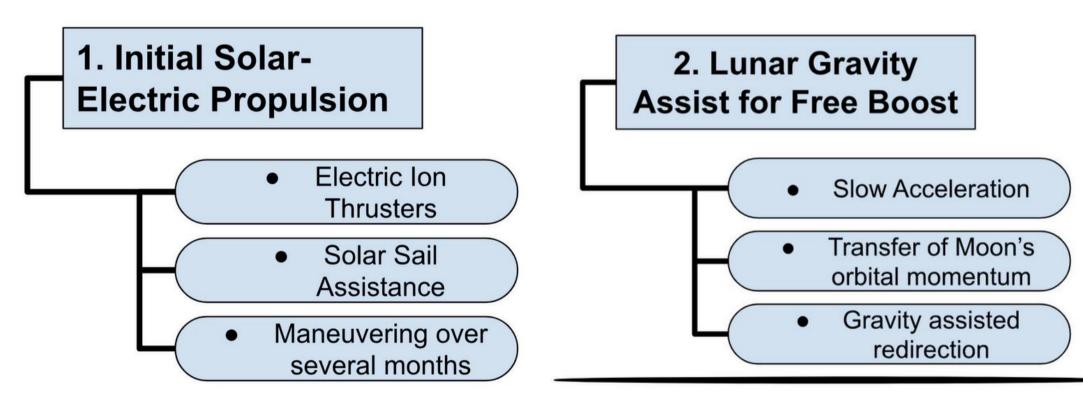


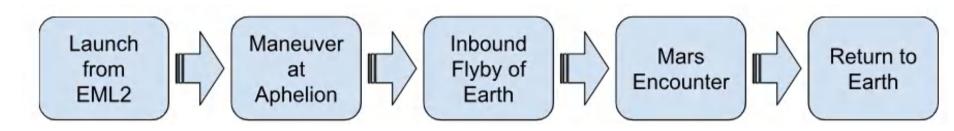
Fig 2.4.4- space tug [Sijia Zhou]

OPERATIONAL INFRASTRUCTURE

Fig 3.1.2 Acceleration of Settlement

[By Dawood on photoshop]

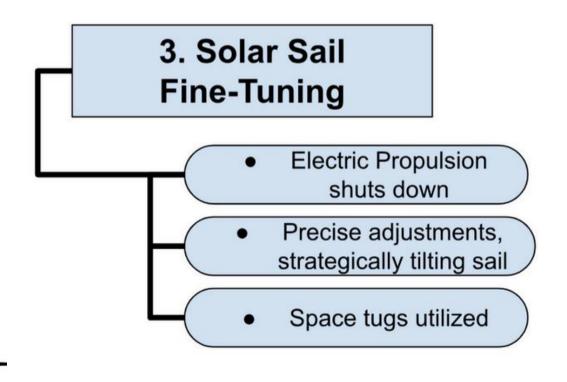

3.1.1


Primary Orbital Location

Orbital Location

- The Construction will take place in the Earth-Moon Lagrange Point 2
- The settlement will start detach when the Aldrin Cycler is at its periapsis relative to the target planet.

Process of Acceleration

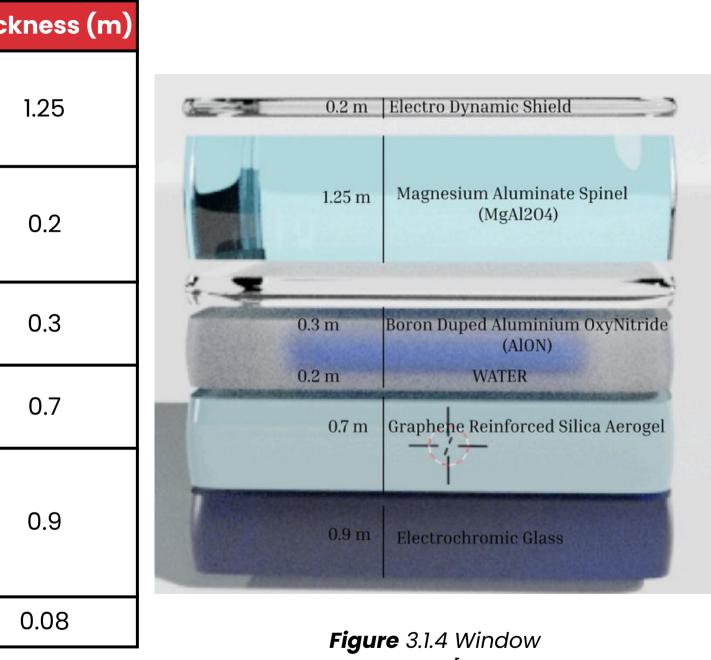


Orbital Path after Deployment

Fig 3.1.1 Orbital Path

[By Name on Software]

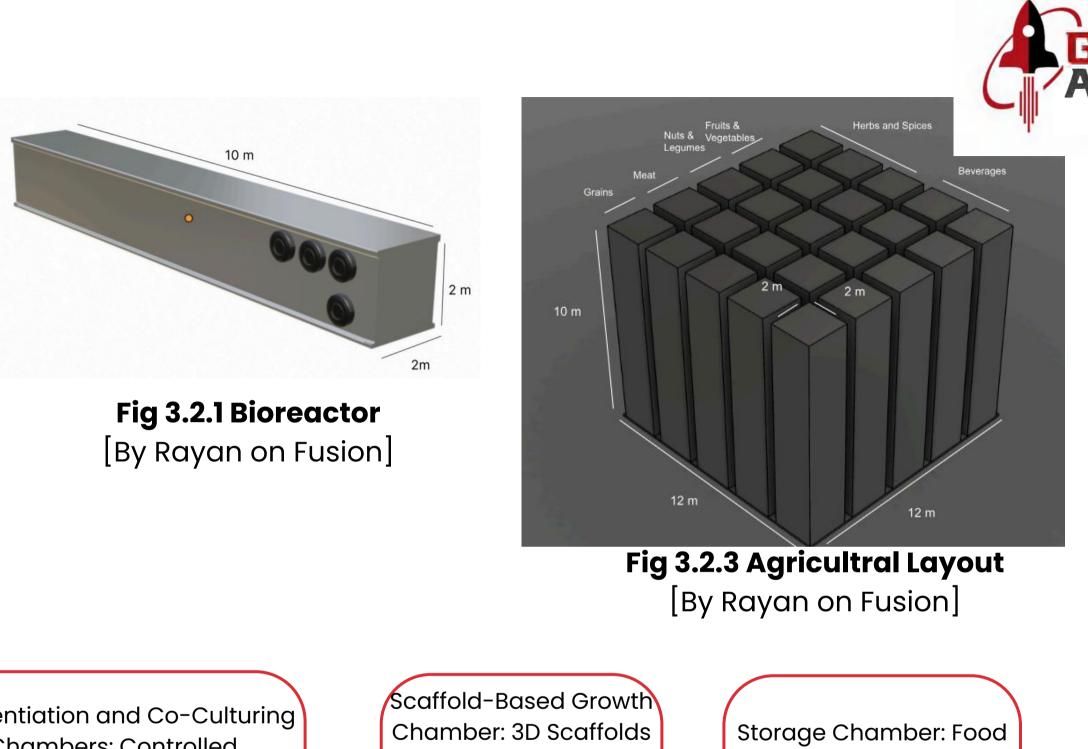
Materials


Window

Materials	Properties	Source	Thic
Magnesium Aluminate Spinel (MgAl ₂ O ₄)	High Tensile Strength, Radiation Protection	Alaskol	
ElectroDynamic Shield	Prevents accumulation of dust on the windows	Subcontractor ElectroProtect	
Boron-Doped Aluminum Oxynitride (AlON)	Reduces Neutron and Proton Radiation, Structural Reinforcement	Alaskol	
Graphene-Reinforced Silica Aerogel	Residual Radiation Absorption, Minimizes Heat Loss	Alexandriat	
Electrochromic Glass	Light Control, Heat Protection, Transparency	Rockdonnell (asteroid mining and refining)	
Water	Radiation Shielding	Stuff of Life	

Table 3.1 [By Suhani G, Nemo W, Harsh S on Canva]

OPERATIONAL INFRASTRUCTURE


Configuration [Sijia Zhou, rhino]

Food Production

Stem cell based food production:

- Induced pluripotent stem cells sourced from Earth
- Conducted in Multi-chambered Bioreactor System
- Nanobots from Nano Solutions are applied inside all 5 chambers
- Adapts to changing conditions to improve Cell Adhesion and Structural Integrity
- Nanobots optimally balances conditions in the bioreactor

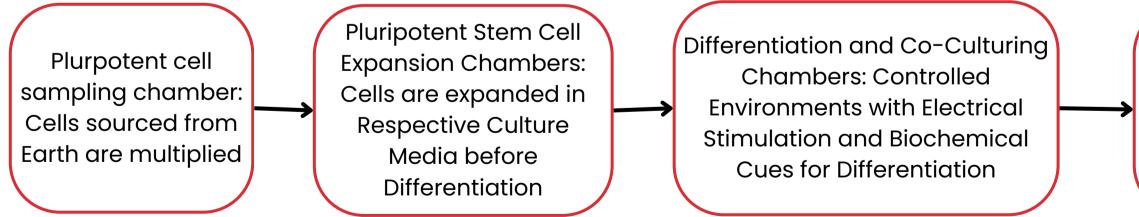
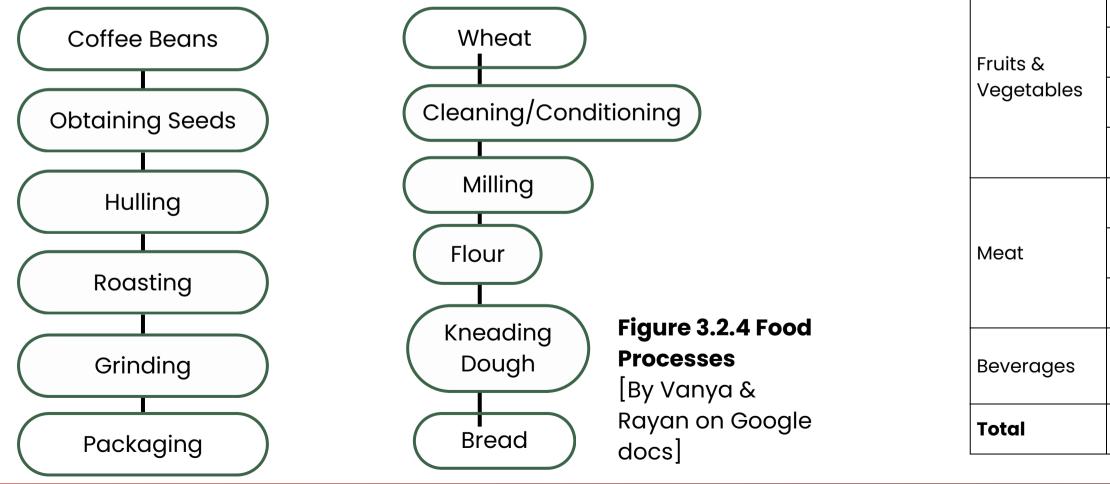


Fig 3.2.2 Argicultural Steps [By Vanya S on draw.io]

OPERATIONS AND INFRASTRUCTURE

made from Biodegradable Polymers to support tissue formation.


Materials are Stored until they are transported by Agribots

Food Production

Packaging, Storing and Shipping

- The food materials pass through a conveyor belt system.
- Edible, good quality produce are separated.
- Some of the food products are processed before packing.
- The final packaging is embedded with **RFID tags.**
- Poor quality produce- repurposed into **microbial products.**
- Packaged goods are shipped to residential storage.
- Shipped to residential areas by self driving bots (from **Drone**) and Delivery)

OPERATIONS AND INFRASTRUCTURE

3.2.1

Crop	Amount Produced Per day (g)
Rice	1,161,900
Oats	464,760
HB4 Wheat	663,942
Oregano + Peppercorns	46,476
Ginger + Turmeric	46,476
Lentils	199,182
Soyabean	154,920
Almonds + Cashews	309,840
Apple + Banana	697,140
Strawberry	663,942
Chilli + Capsicum	278,856
Tomato + Potato	542,220
Beef + Pork	387,300
Chicken	374,806
Fish	410,565
Coffee cherries +Tea leaves	371,808
_	5,616,954

Table 3.2 **Food list** [By Vanya & Rayan on Google docs]

15

Category

Grains

Herbs and

Spices

Nuts &

Legumes

Power Generation

Primary Source: Solar Panels

- A polygonal rollable solar array using flexible Perovskite Solar Cells ensures high efficiency.
- Each **9m × 9m** panel adapts to varying irradiance (1361 W/m²) near Earth, 604.44 W/m² near Mars, 2623.89 W/m² at periapsis).
- 4 panels will be used

3.2.2

- Six Lunettas (by LightWorks) enable 24/7 operation, with wiring by ElectroProtect & ZAP! Industries.
- Solar Panels can be **rolled up** in times of solar storms etc.

Secondary Source: Methane

- Methane obtained from **Toss it To Me.**
- Energy density of approximately **55.5 MJ/kg**, highly dense source of power

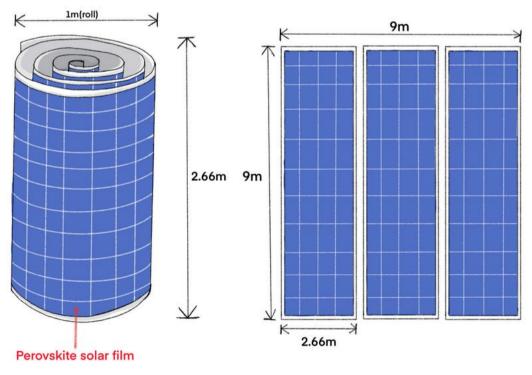
Backup Source: ElectroDynamic Tethering

- Retractable, rigid **Electrodynamic Tethers** capable of interacting with the magnetic field and generating current.
- Approximately 1 km in length, 90000kwH produced
- Some have robotic arms to take in debris, some have magnets
- **Triple benefits** of electrodynamic tethering- space debris clearing, material acquisition, power generation.

Storage: Hydrogen Fuel Cells

- term use.

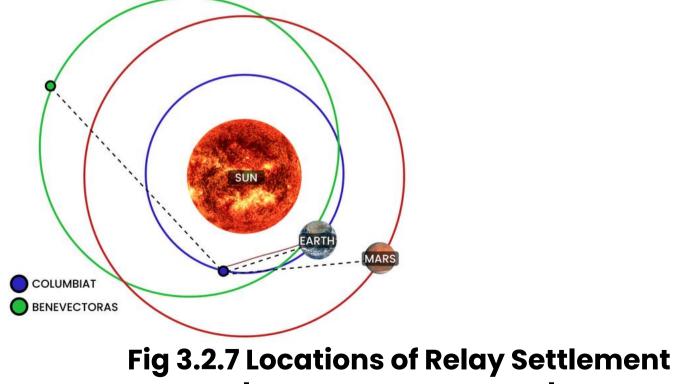
Repurposing for storage of other gases:


A shared cryogenic system optimizes efficiency, ensuring selfsustaining power, life support, and propulsion in orbit. • Nitrogen (N₂) in metal nitrides (life support) • (Xe), compressed 200kgs (for engines)

OPERATIONS AND INFRASTRUCTURE

• Hydrogen fuel cells store excess solar power via electrolysis, • H₂ stored in **Metal- Organic Frameworks** for high-density, long-

• Fuel cells generate electricity, heat, and water on demand.


Fig 3.2.6 Rolling mechanism for solar panels [By Kiki on Procreate]

Communication

External Communication

- Uses different wavelengths for external communication via a multi frequency laser.
- Transceivers secured in a **FSO** (Free-space optical communications) by a three-axis gimbal
- Sensors on- Benevectoras, Colombiat, Earth and Mars to receive lasers
- Benevectoras transmits and receives signals to and from Earth directly or indirectly through Colombiat on the occasion Earth's location is out of view due to the Sun
- Depending on which location is in view to Benevectoras, either Colombiat or Earth will transmit signal to and from Benevectoras and Mars

[By Ishani V on Canva]

Internal Communication Internal Communications Network: Wi-Fi:

- Is compatible with visitors' devices
- Covers all living areas
- Routers are connected with cables embedded within walls
- Communications

Internal Communications Device: Smart glasses:

- Uses bone conduction to transmit sound
- Can view augmented reality to view alerts via glasses lens
- Haptics sensitive ring used to send text messages and interact with augmented reality
- Sounds and display from glasses in case of evacuation
- emergency

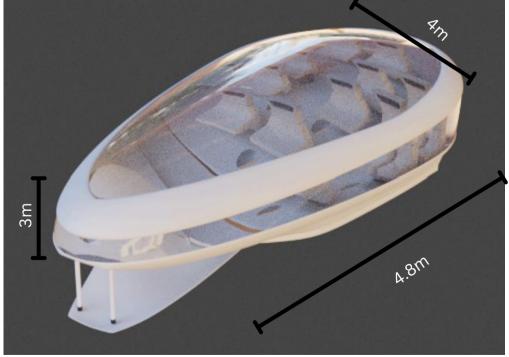
OPERATIONS AND INFRASTRUCTURE

• Fiber optics are provided by subcontractor OrbitLink

• Ring detects vital signs and sends SOS signal in case of health

Fig 3.2.8 Glasses and Haptics Ring [By Yuhan Xu on Blender]

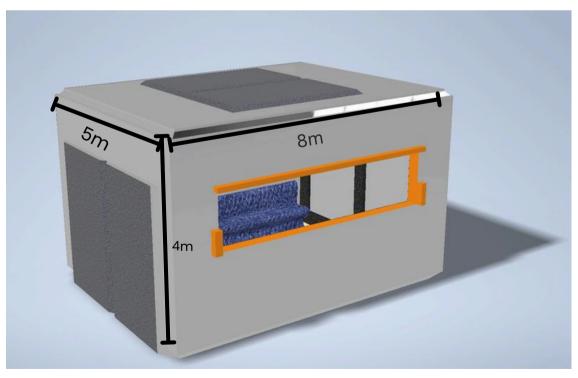
Transportation


Hover Pods-Personal

- CAB- like System
- Location: Residential Areas
- Accommodates: 12 passengers,
- Features:

3.2.4

- has transparent windows
- hovers using Electromagnetic Propulsion technology
- Al-driven navigation for efficient, autonomous travel
- Adjustable climate control for personalized comfort
- Advanced collision detection and avoidance system
- Functions as an evacuation pod in emergencies
- Charging stations will be there around the settlement


Number of PODS: 100

HOVERPOD: By Macauley B. using Blender **Fig 3.2.9**

Elevators - Public Location:

- Zero-G docks connect to the outside so that external spacecraft can dock and unload
- Elevator is used for inter volume transport
- Internal passengers enter from another entrance and are kept separate from space conditions
- In case of emergency, go to the nearest exit. There are 2 exits: the residential area and the industrial area.
- It has seats with secure straps ensuring the safety of the people • It accommodates 36 people
- of cargo

OPERATIONS AND INFRASTRUCTURE

• There is a separate elevator which is used for the transportation

Fig 3.2.10 ELEVATOR: By Audi using Blender

Atmosphere

- Volume of Air: 53699120.3
- CASSSC count: 8068
- Overall Pressure: 0.8 atm
- Air Revitalization will be done by **Clean Up Your Act**
- Temperature is regulated with **Radiators** (Humidifiers and Dehumidifiers)
- Air, Humidity regulators are present.

Gas type	Nitrogen		Oxygen		Water Vapoi	r (H2O)	Carbon Dioxide (CO2)		Temperatur e (°C)	Humidity(%)
Areas	Percentage (%)	Pressure (kPa)	Percentage (%)	Pressure (kPa)	Percentage (%)	Pressure (kPa)	Percentage (%)	Pressure (kPa)	_	-
Industrial	72.5	58.725	27.36	22.1616	0.1	0.081	0.04	0.0324	15-25	40
Agricultural	73	59.13	26.5	21.465	0.4	0.324	0.1	0.081	15-20	60
Research	75.4	61.074	24.07	19.4967	0.5	0.405	0.03	0.0243	15-20	40
Residential	73	59.13	26.56	21	0.4	0.324	0.04	0.0324	16-26	60
Storage	75	60.75	24.76	20.05556	0	0	0.04	0.0324	15-20	10
Overall	73	59.13	26.56	21	0.4	0.324	0.04	0.0324	15-26	50

Table 3.3 [By Kiki on Canva]

OPERATIONS AND INFRASTRUCTURE

More oxygen is provided in Residential areas and more Carbon Dioxide is provided in the Agricultural Areas.

Managment - Power and Water

Department	Power Requirements
Operations	19906 kW
Automations	2014 kW
Human Factors	7435 kW
Misc (Engine, Settlement etc)	8391 kW
Total	37746 kWh

Table 3.4: Power Distribution

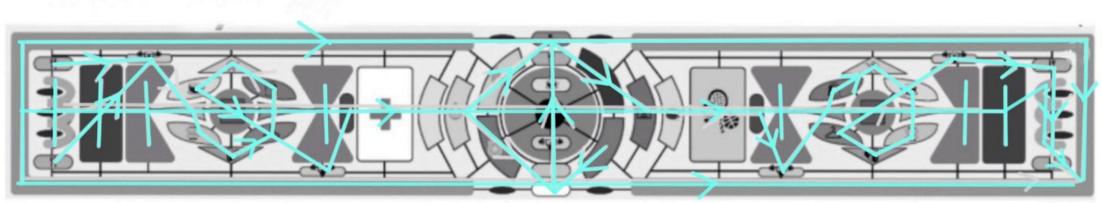
[By Suhani G on Canva]

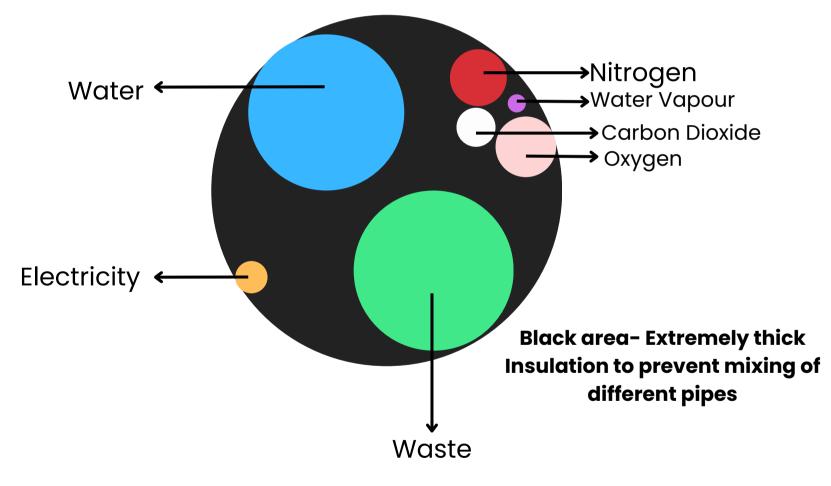
Sector	Total Water Required (all people per day)	Total Water Required (All people, Quarterly: 3 months)
Residential	928,512.00	83566080
Agricultural	225,300.00	20277000
Industrial	427,200.00	38448000
Research	213,600.00	19224000
Total	1,794,612.00	161515080

3.2.6

Table 3.2.11: Water Distribution

[By Suhani G on Canva]




Fig 3.2.11 Distribution of Utility Lines [By Zhifei W on Autodesk Sketch]

during IOC and FOC, then recycling

Recycling is subcontract to **Clean Up Your** Act

CASSSCs **IOC: 286** FOC: 858

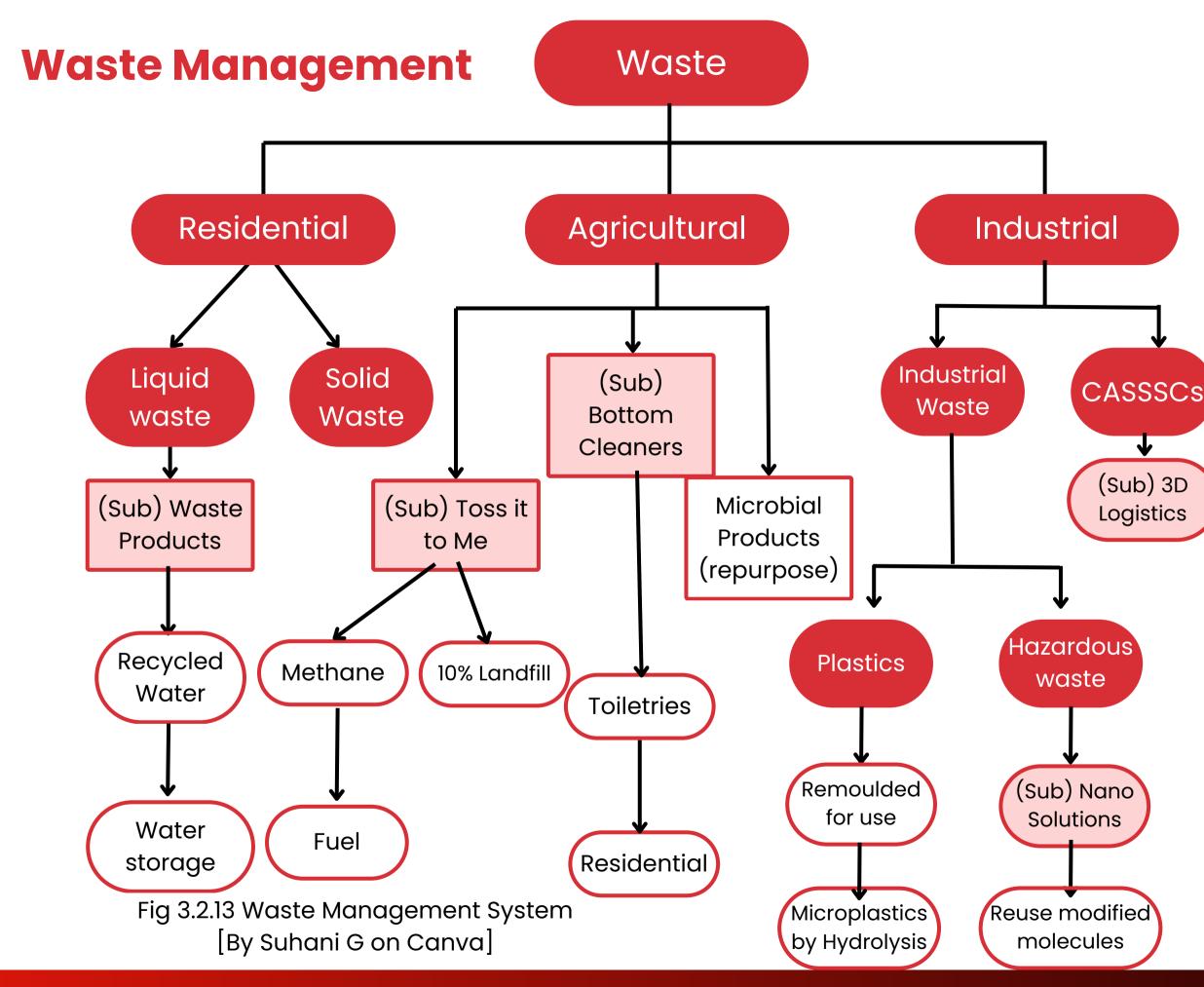
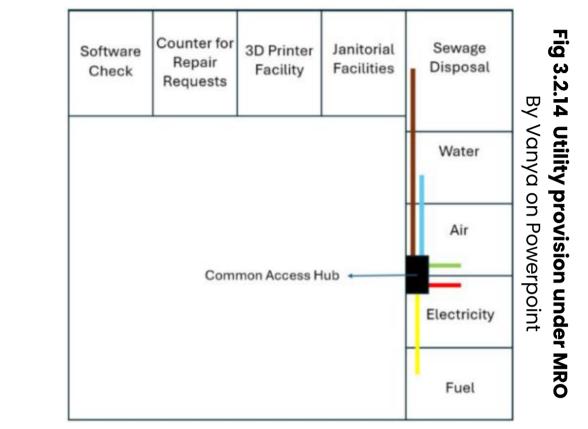

OPERATIONS AND INFRASTRUCTURE

Fig 3.2.12 Combined Utility Pipe

[By Suhani G on Canva]



3.2.6

OPERATIONS AND INFRASTRUCTURE

Maintenance, Repair and Overhaul

- Advanced 3D printing capabilities to produce spare parts and repurposed bot assemblers for larger repairs in the spaceships (subcontracted to 3D logistics).
- Refueling facilities and reconfigurable maintainence and manufacturing workshops (refer to 7.2.1)
- Rigorous inspections every 2 months- assess material integrity, identify damage, and keep up with updates.

Jigs **Vertical Stability Jigs**

- Electromagnetic Clamps (x2) connected with ball sockets for free movement.
- Ion thrusters with **RCS**.
- Use of Inertial Navigation System in the Control Module Sphere for detection and implementation of Deviation Correction.
- Anterior Control Panel for smooth communication .
- IOC: Structural assembly and the alignment of the modules to be attached together.
- FOC: Once purpose is fulfilled, dismantled and repurposed.

Assembly Jigs

- Modular System
- Free-end for attachment of choice.
- Self-repair.
- Magnetic Tugs (x4)
- and ion thrusters.

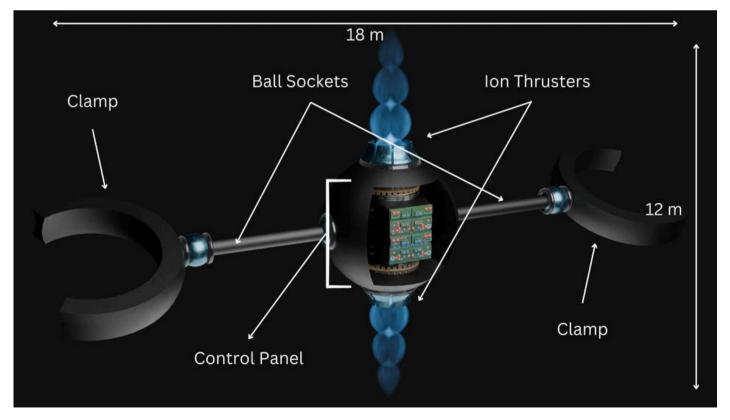
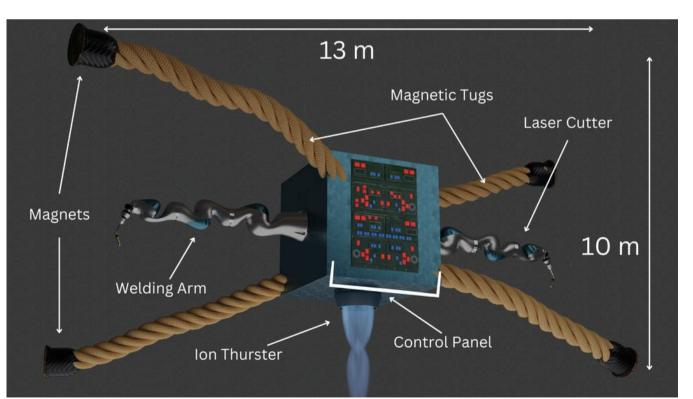


Fig 3.3.2 Assembly Jigs

[By Daniyal on Blender]

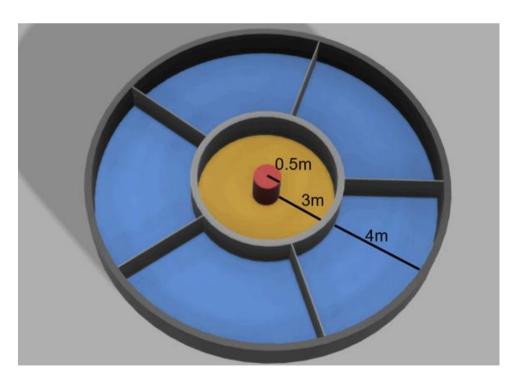
Fig 3.3.1 Vertical **Stability Jigs** [By Daniyal on Blender


OPERATIONS AND INFRASTRUCTURE

• Omni directional welding and Laser-cutting mechanical arms.

• IOC: Primary method of structural assembly, use of magnetic tugs

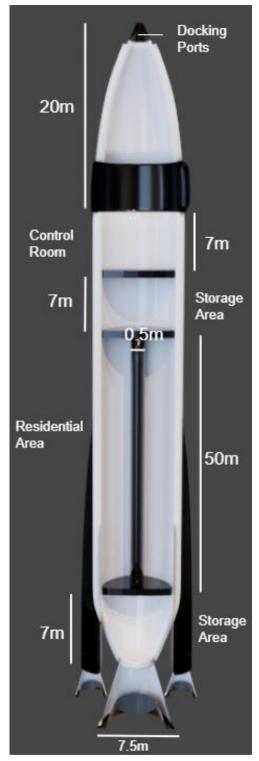
• FOC: Will be used for further expansions - Structural Reinforcements, Replacement of Components, Updation of Technology.



Shuttle Ships

External Transportation

- 70 people shuttles and 30 cargo shuttles will initially be stored on the settlement
- During the first flyby of mars, 23 people shuttles and 10 cargo shuttles will be deployed and sent to mars.
- Then, 23 people and 10 cargo shuttles are deployed to earth.
- 24 people and 10 cargo are left on the settlement afterwards.
- With the second cycle then, each flyby will have 22 people shuttles transit from the settlement to the planet and vice versa.

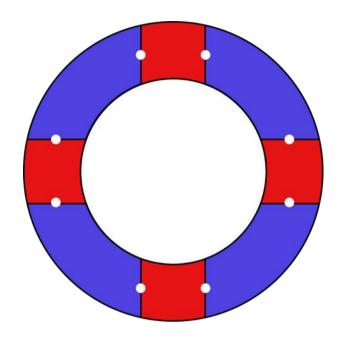

Fig 3.4.1 Floor Layout [By Rayan on Fusion]

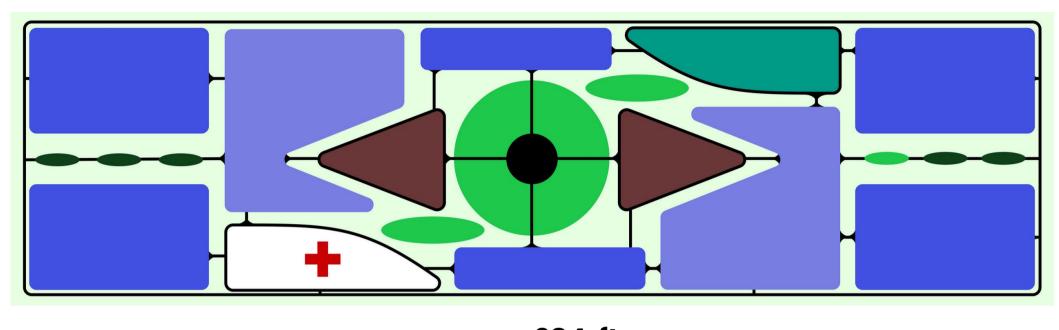
Living Quarters **Recreational Area**

Elevator/Water Transport

Fig 3.4.2 Passanger Shuttle [By Macauley on Blender]

OPERATIONS AND INFRASTRUCTURE


Passanger Shuttle Cargo Handling Process



TASKS	Μ	Т	W	Т	F	S	S	Μ	
Loading of Settlement Cargo									
Shuttle Travel from Settlement to Target Planet									
Unloading of Cargo on Target Planet									
Reloading of Cargo from Target Planet									
STEP 1									
Jigbots carry cargo from the settlement to respective floors									
Jigbots load cargo onto the storage areas									
Jigbots go into storage as the shuttle takes off									
PHASE 2									
After touchdown, the jigbots start unloading all cargo									
After the cargo is stored, jigbots start loading cargo from the planet									
Jigbots go into storage and prepare for lift-off									
PHASE 3									
Repeat Phase 2 at the settlement and repeat cycle									

Fig 3.4.3 Gantt Chart [By Akshat on Excel]

Community Distribution

284 ft

Solar Flares protection areas Regular residential area

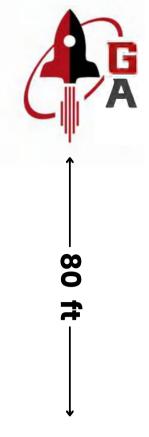
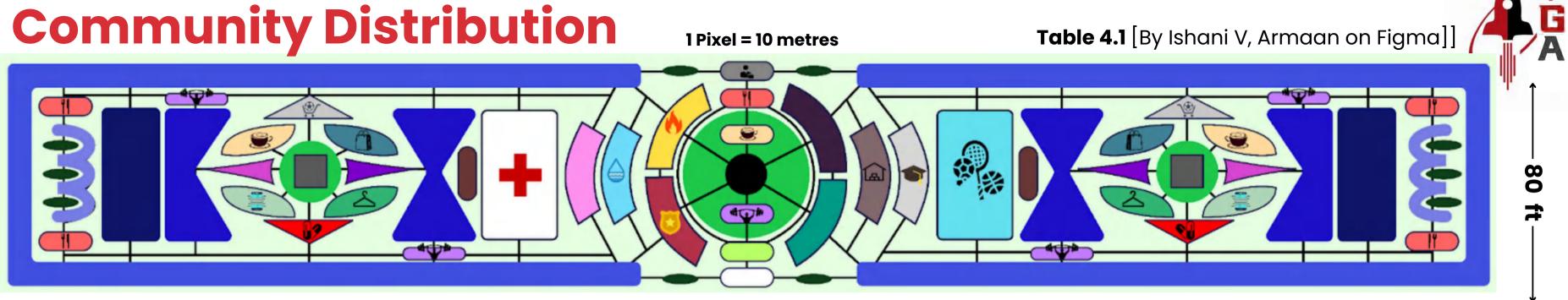

Fig 4.1.1 [Ishani, Figma]

Fig 4.1.2 Solar Flare Protection Area Community Map [Ishani, Figma]

- Residential volume divided into 4 sectors.
- Solar Flare Protection Areas (SFPA) also in between sectors, separated by airlocks
- Each SFPA has the capacity to accommodate full population of one sector in case of emergency.

HUMAN FACTORS AND SAFETY

1 Pixel = 10 metres



Community Distribution

1 Pixel = 10 metres

503 ft

	Amenities	No. of Units	Floors	Area of a volume (sqft)	
	Small Family 2BHK House	45	12	1191	
	Single 2BHK Shared Space House	188	12	527	
	Married 1BHK Apartment	27	1	2435	
	Single 1BHK Apartment	10	1	3500	
"	Restaurants	5	1	180	
ك	Clothing Shops	2	1	350	
	Club	2	2	450	
<u>ب</u>	Sports Shop	2	1	200	
÷	Hospital	3	1	1,750	
	Cultural Exchange Centers	2	1	500	

	Amenities		Floors			Amenities		Floors	Area (sqft)
				(sqft)		Electronic Shop	2	1	300
-	Food & Water Storage	1	1	180	8	Cafes	3	1	200
•	Fire Station	1	3	230	0,9	Pharmacy	2	1	300
	Cinema	1	2	400	(M)	Souvenir Shop	2	1	200
	School	1	3	500		Art Gallery	2	2	400
	Sports Arena	1	2	900		Control Centres	1	1	130
	Grocery Stores	2	1	350	1	Police Station	1	1	400
	Office	1	3	370			-		
				400		Administrative Office	1	1	170
ð	Recreation		I	400		Library	1	3	200
	Charging Stations	10	1	400		Park			
al V h	Gym	4	2	320		Green Spaces			

HUMAN FACTORS AND SAFETY

Table 4.1 [By Ishani V, Armaan on Figma]]

Amenities & Consumables

Kit	CASSSCS per 1000 people	Items	Supply Duration	Non- Consumable	CASSSCS per 1000 people	
Basic		Toothbrush, Toothpaste, Dental Floss, Face Wash, Toilet Paper , Soap Bars, Body Wash, Shampoo,		Utensils	0.06	Plates, Bowls, Cups, Knife Set, Spatul Pans, Spoons and Forks Set, Grater, Fry Pan, Colander, Cutting Board, Full Set Measuring Cups
Basic Essentials	0.11	Conditioner, Q-Tips, Cologne, Shaving Gel, Razor,Tissues ,Hand Sanitizer	Bi-Monthly	Appliances	8	Refrigerator, Microwave, Washing Machine, Oven Cooktop, Flat Iron, Vacuum Cleaner, Television, Food Processor, Dishwasher, Toaster, Blend Coffee Maker, Electric Kettle
Daily Wares	0.23	Clothing, Towels, Footwear, Brushes, Nail Clippers, Bedding, Socks	Bi-Annually	Tools	0.07	Screwdrivers, Wrenches, Hammers, Pli Drills, Sanders, Pruners, Maintenanc
Medical Provisions	0.02	Vitamin Tablets, Painkillers, First Aid Kit (Bandages, Antiseptics, Medical Tape), Antacids, Allergy Relief Tablets, Cough Syrup,	Quarterly	Stationery Items	0.2	Tools, and Measuring Tape Writing Instruments, Sports Gear, Mus Instruments, Art Supplies, Teaching Ai Reference Materials and Files
		Lactaid, Epinephrine		Emergency Repair Kits	0.01	Duct Tape, Screwdriver Set, Hamme Utility Knife, Pliers, Super Glue
Menstrual Hygiene 0.03		Sanitary Pads, Tampons, Painkillers, Heat Pads, Menstrual Cups, Feminine Wipes	Monthly	Entertainmen Supplies	t 0.12	Books, Board Games, Card Games, A Supplies, Musical Instruments, Puzzle Sewing Kits and Cloths, Writing Suppl

HUMAN FACTORS AND SAFETY

Table 4.2 [By Ishani Verma]]

Amenities & Consumables

Recreations

 Table. Furniture
 [Shambavi, Google Docs]

	[0.1						
Туре	1BHK (Single)	1BHK (Couple)	2BHK (Small Family)	2BHK (Shared	S no	Name	
	Single Bed, Nightstand, Desk, L-	Queen Bed, Nightstand,	Queen Bed, Nightstand, Desk, L-	Space) Queen Bed, Nighstand, Desk, L- Shaped	1	Orbital harmonics	Residents floating gestures symphon
Furniture	Shaped, Sofa, Dining Table, Chairs Wardrobe, Coffee, Table, Kitchen Island, Television Stand	Desk, L- Shaped, Dining Table, Chairs, Wardrobe , Coffee Table, Kitchen Island, Television Stand	Shaped Sofa, Dining Table, Chairs, Wardrobe, Coffee Table, Kitchen Island, Television Stand	Sofa, Dining Table, Chairs, Wardrobe, Coffee Table, Kitchen Island,	2	SlipStream	A vortex i into any path shift based on
CASSSCS	0.12	0.16	0.25	Television Stand 0.16	3	All in one	3D holog create a Any loca experienc
Art galler		s from cultures around the					
cafes Cultural	Different		t/cold beverages for quick sit downs and meetings rams for integration,(workshops, exchange programs,				By using
exchange Clothing		th a variety of clothing art	icles at multiple price po	pints	4 Biolumevie w		create a setting,
Electroni	cs Day to D repair fac	ay electronics like charger ilities	rs,phones,laptops etc as	s well as			luminesce
Club hou	tables,dr	mingling and group hang nks, and ambient lighting		bl			<u> </u>

 Table. List of Shops
 [Shambavi, Google Docs]

HUMAN FACTORS AND SAFETY

Table 4.3: Recreation [Wi Wei, Inventor Lynn Wang, Procreate]

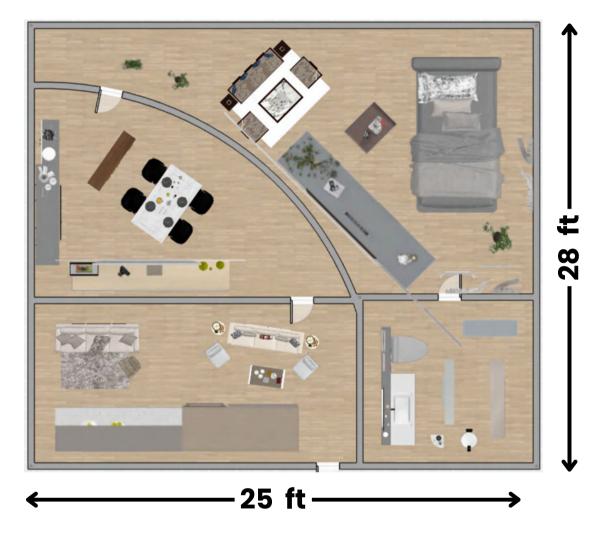
Description

control certain S instruments with to create enhanced nies

ride simulating a dive environment The ride fts using generative AI, n genres

ograms are used to real life environment. ation or sport can be ced in low gravity here.

g mars alignment we perfect space viewing bioengineered with ent lighting.


Depiction

Housing Design and Layout

Interior[Will, SketchApp]

BHK Apartment

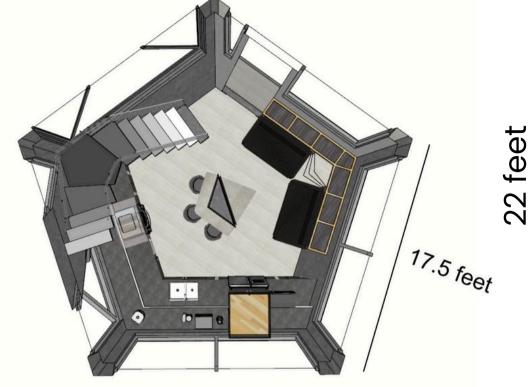
- Total Buildings: 40 (10 Buildings per Sector)
- Total of 48 Apartments with 4 Apartments per Floor
- Occupies a single person
- Total height 120 feet, 12 floors total.
- Base Area Covered per Unit is 700 sq.ft
- Base Area covered by a floor is 3500 sq.ft (giving space for hallways)

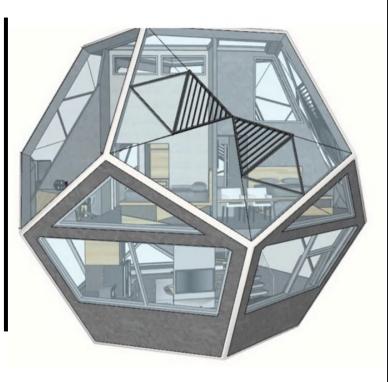
Single

09

20

HUMAN FACTORS AND SAFETY




1 BHK Apartment

• Total Buildings: 108 (27 Buildings per Sector) • Total of 24 Apartments with 2 Apartments per Floor • Occupies a married couple • Total height of 120 feet, 12 floors total. • Base Area Covered per Unit is 900 sq.ft. • Base Area covered by 1 floor is 2435 sq.ft (giving space for hallway)

Housing Design and Layout



Figures 40-43 [Will, SketchApp]

Dodecahedron Sharing Space

2 BHK House (Shared Space)

- 752 Total Houses (188 Houses per Sector)
- 2 People per House
- House shared between **two** single people.
- Height of **22 feet** with the edge of 17.5 feet.
- Base Area Covered per Unit is 527 sq.ft

24 ft

Triage Residence

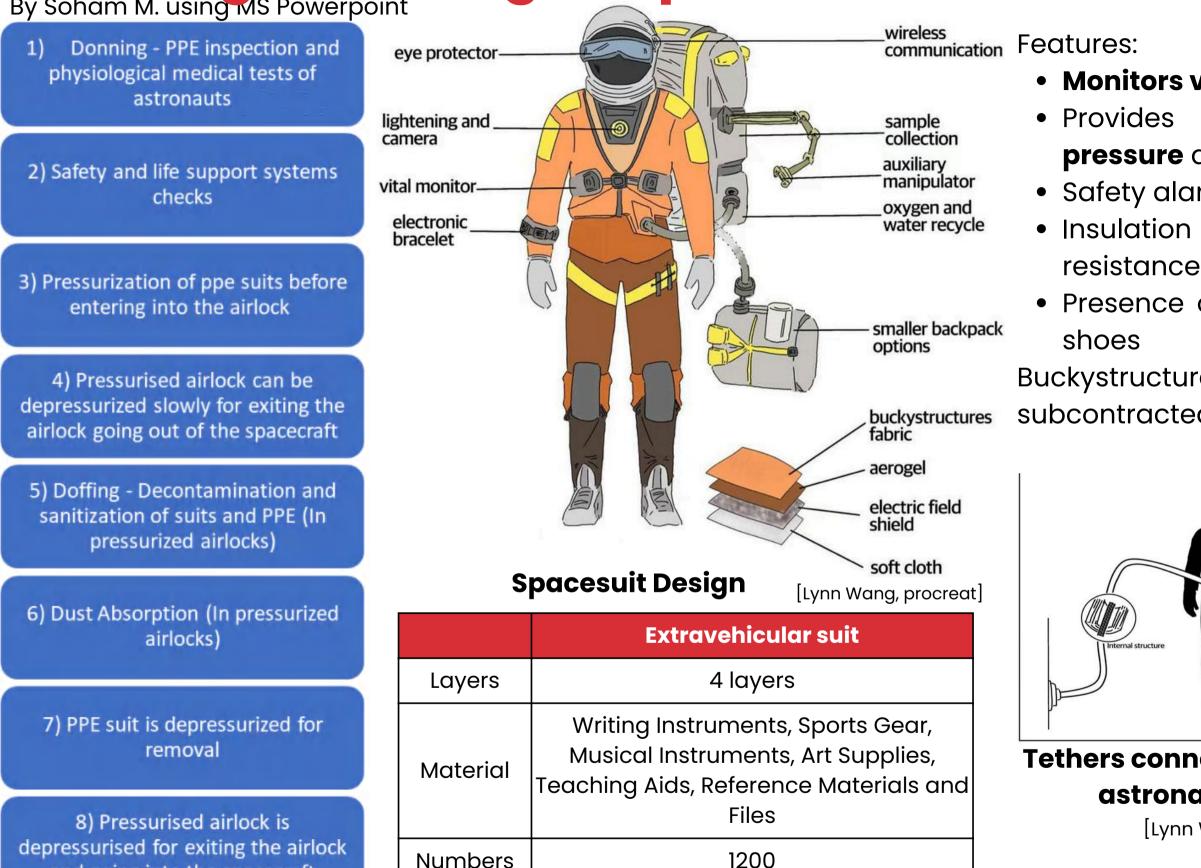
2 BHK House (Small Family)

- 180 Total Houses(45 Houses per Sector)
- 3 People per House
- Occupies a married couple. with a child.
- Height of **10 feet** with 1 floor.
- Base Area Covered per Unit is 1191 sq.ft

HUMAN FACTORS AND SAFETY

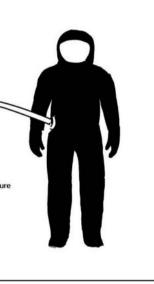
2 ft 14 ft 3 ft 6 ft 12 ft 9 ft 2 ft 6 ft 5 ft 6 ft 14 ft

24 ft

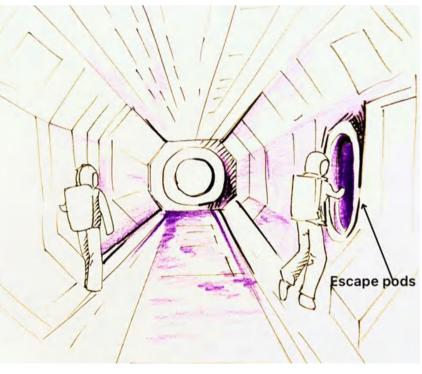


[Will, SketchApp]

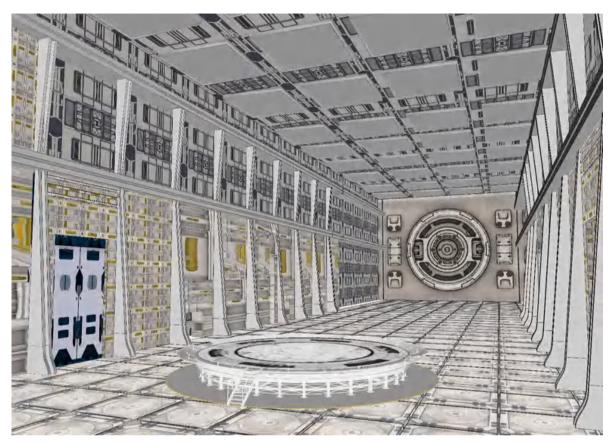
Donning & Doffing of Spacesuits By Soham M. using MS Powerpoint


HUMAN FACTORS AND SAFETY

4.3


and going into the spacecraft

- Monitors vitals of the astronaut
- Provides life support, removes excess CO2, controls pressure and temperature
- Safety alarm and wireless communication
- Insulation against extreme temperatures and heat
- Presence of foot restraints such as velcro and magnetic
- Buckystructures,Extreme survival technologies will be subcontracted for the materials in the space suits

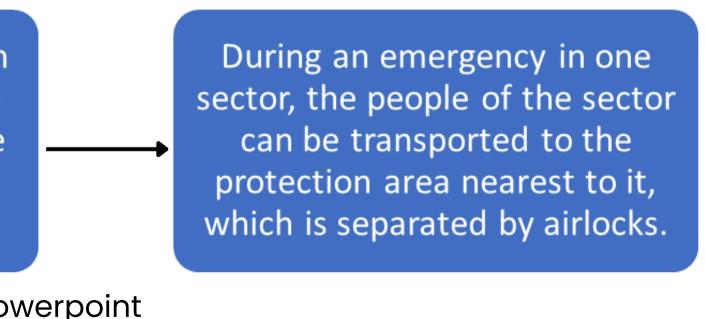

Tethers connected to astronaut [Lynn Wang, Procreate]

Depiction of evacuation and safety

Safety and Evacuation

Manual Supports in 0g/Low G Interiors [Will Wei, Inventor]

- In a low gravity environment, kevlar ropes, which are able to change shape to allow for easy grasp, are connected to a multi-strand tether for use.
- Handholds are on the wall
- Handholds have a staggered format so it can be accessible to kids and adults.
- For extravehicular activities, units such as SAFER or MMU are used.
- Very important if untethering occurs.


The 4 residential sectors have several emergency sirens, pathways and alarms, and sensors.

During solar flares or radiation hikes, there will be solar flare protection areas to where the residents will be transported using public pods.

By Soham M. using MS Powerpoint

HUMAN FACTORS AND SAFETY

Educational Courses

Introduction to Mars and Martian Environment	Resource Utilization	
 Course A: The History of Mars Duration: 1.5 hours 6 instructors evolution of Mars itself 	 <u>Course A: In-Situ Resource Utilization in</u> <u>Mars</u> Duration: 1 hour 9 instructors valuable resources 	Course A: Me • Duration: • 18 instruc • Health Eff
 Course B: The Mars Environment Duration: 3 hours 6 instructors natural terrain and geology of Mars, through a series of VR simulations 	Course B: In-Situ Resource Utilization <u>Techniques</u>	Course B: En • Duration: • 18 instruc • Environm
	Mits topography display decision	Course C: Br • Duration: • 18 instruc • possible l
Classroom 1 (Lecture)	Classroom 3 (Lab)	Course D: Ge Duration: 6 instruct Iocation o
Classr	room 2 (VR)	

HUMAN FACTORS AND SAFETY

Emergency Situations

Medical Emergency Response

- n: 8 hours
- ictors
- Effects of the Martian Landscape

nvironmental Emergency Response

n: 5 hours uctors mental challenges

Breaches and Failures Emergency Response

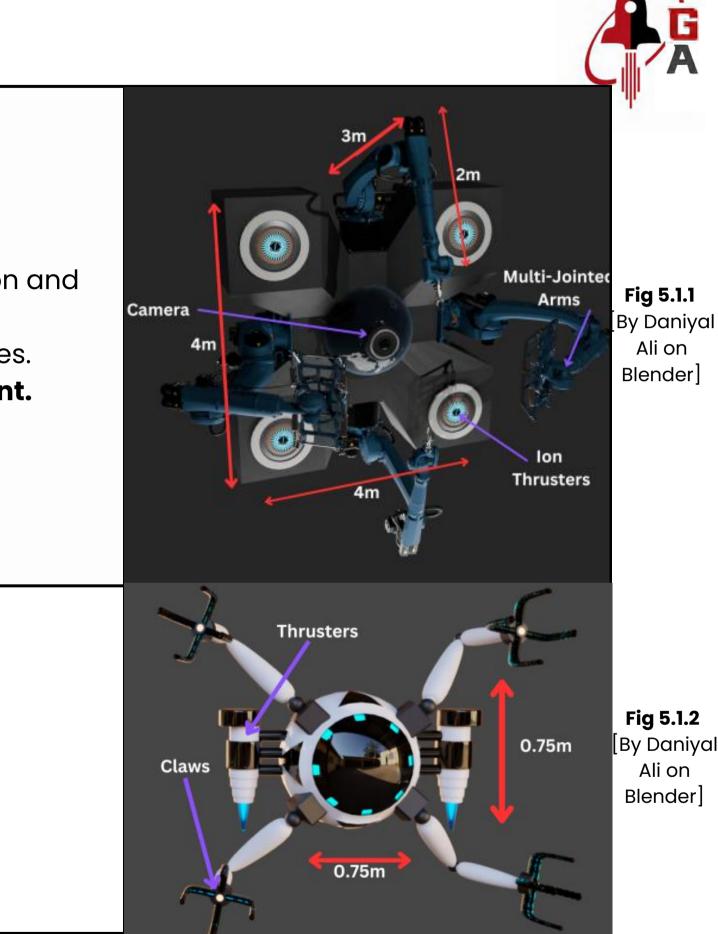
- n: 5 hours
- ctors
- breach and failure situations

Seneral Evacuation Emergency Response

- n: 2.5 hours
- ctors
- of safe zones in the Martian habitat

Construction & Repair

External Construction Bot (80 units):


- Features:
- Multi-jointed arms, ion-stream propulsion, and modular construction for precision and durability.
- Magnetic Pulse Welding Solid-state welds for aluminum, titanium, and composites.
- Transitions to maintenance roles for inspection, unwelding, and panel replacement.
- Supports emergency response with live camera updates for critical tasks.

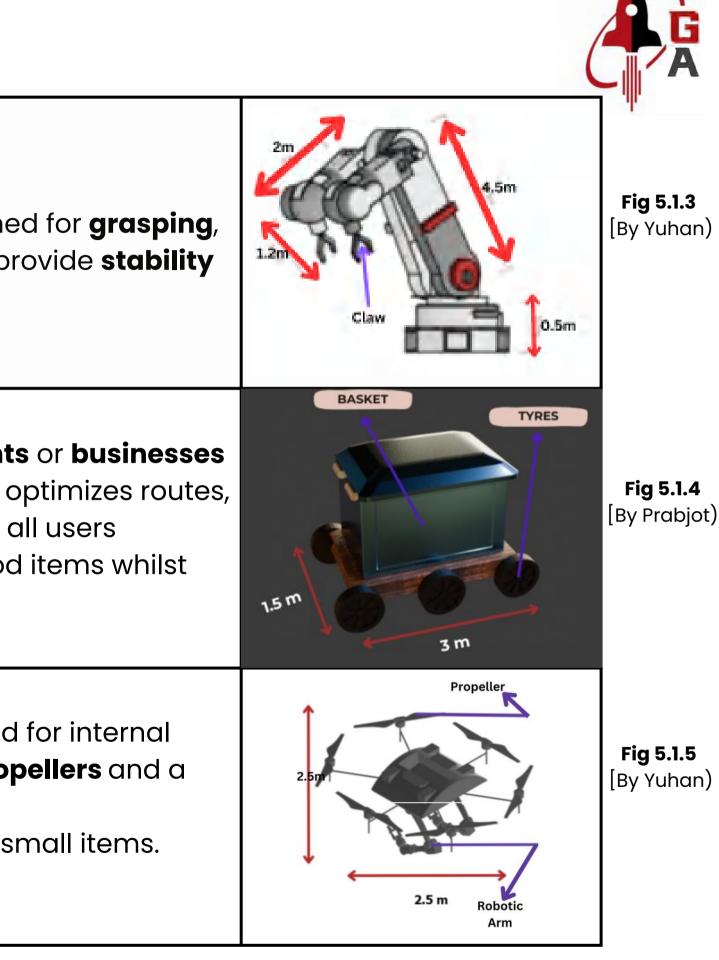
Jig Bot (120 units):

- Specializes in zero-gravity construction by securely holding robots in place.
- Equipped with **precision claws**, **powerful thrusters**, and **modular adaptability**.
- Operates with advanced navigation and **autonomous positioning** for space tasks.

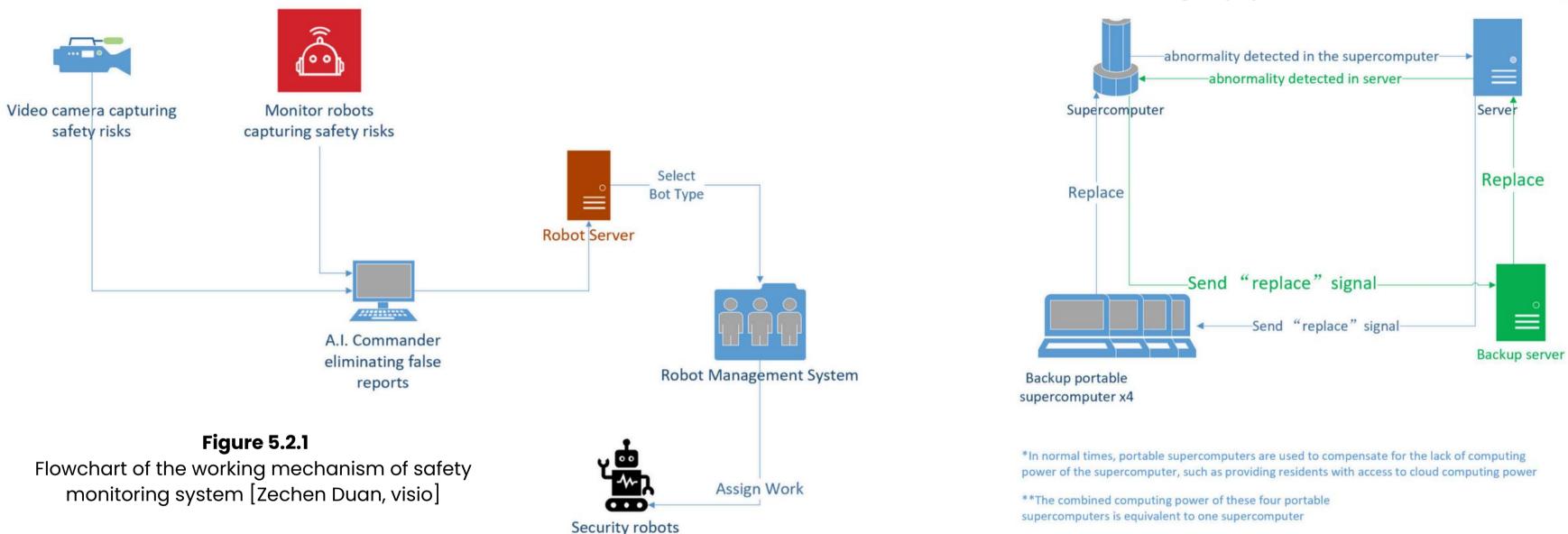
AUTOMATION DESIGN AND SERVICES

5.1.1

Internal & External Construction Jig (fixed-based) (150 Units): Description: Equipped with jointed arms and a precision claw, these jigs are designed for grasping, handling, and assembling objects both inside and outside the space station. They provide stability and **dexterity** for various construction and maintenance tasks.


Delivery robot (300 units):

Description:This robot receives Food transportation and material tasks from **residents** or **businesses** via a community app. It uses shared computing resources to access real-time data, optimizes routes, and adjusts delivery schedules, ensuring efficient and responsive service for all users **Feature:** Provides self-driving air and ground vehicles capable of transporting food items whilst keeping them cool.


Internal construction drone (150 units):

Description: Used for construction of site and holding of jigs inside the rings. Used for internal monitoring, maintenance, and repair work of the space station, equipped with **propellers** and a camera for movement and visual inspection.

Feature: Provides self-driving air and ground vehicles capable of transporting small items. Subcontractor-Drone & Delivery

The safety monitoring system

- Capturing safety risks, monitor robots and cameras send signals to the central AI, where it assesses the information.
- After eliminating false reports, the AI will send information to the robot server, assigning work to security robots.

AUTOMATION DESIGN AND SERVICES

5.2.2 Flowchart of the working mechanism of backup and contingency system [Zechen Duan, visio]

Firewalls restrict access, while automated systems monitor threats under human supervision. AES encryption secures data, and industry standards govern transfers. Idem ID cards grant role-based access via microchip scans. Checkpoints and surveillance deter malicious activity.

Contingency Plans

5.2.2

Contingency	Detection	Safety Measures	Contir
Fires	Smoke and Temperature	 Residents are evacuated. Fire extinguishing mechanisms are used. Airlocks are used to cut off oxygen supply. 	1. Rob 2. Rep 3. The
Depressurizati on	Drop in O2 levels, Pressure	 Repair bots deployed for repairs. Beacons and evacuation pods are deployed in the event of complete failure. 	1. Airlo 2. Rep
Human Intruder	Surveillance Systems	 Biometric systems in place all over the settlement. Surveillance Bot looks for suspicious activity through human monitoring. 	1. Surv mode 2. Sec
Electric Failure	Sudden Power Surge or Decline	Emergency Power sources running on different circuits are used.	1. Grid for the
Cybersecurity Breach	Anomaly detection	Whitehat hackers are always on the lookout for any possible security weaknesses	1. All s off for
Control Centre Failure	Electric Failure or Manual Override	 Isolated Power Generation and Access Levels. Rerouting supplies. 	Comn
Robotic Malfunction	Unusual behaviour detected by bot controllers.	Routine automated software and hardware checks are conducted under human supervision.	1. Soft 2. In c as we

AUTOMATION DESIGN AND SERVICES

bots extinguish fire.

- pair bot commences repairs.
- he damaged volume is open for use again

locks are closed and evacuation to safe rooms is done. epair bots seal the compromised areas.

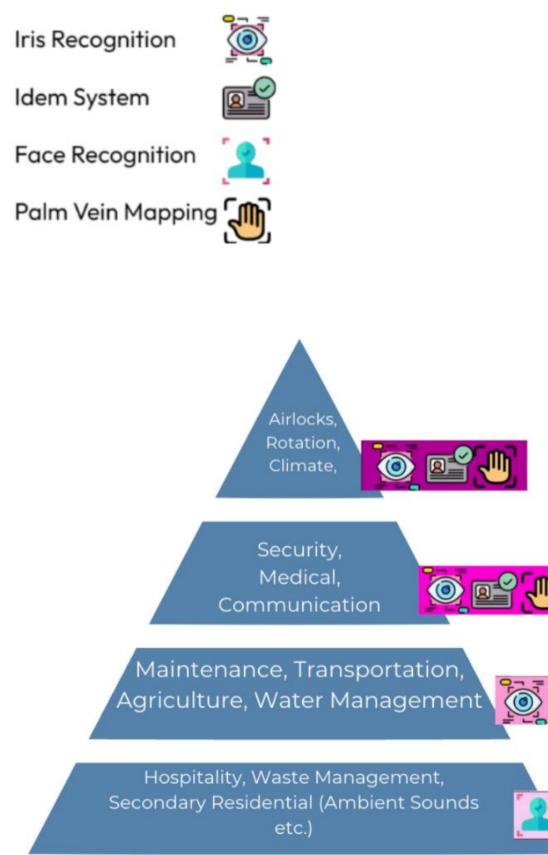
rveillance bots all over the settlement activate high alert

ecurity Personnel close entry and exit points.

d systems allow for easy identification of damaged location ne repair of which a repair bot is sent.

servers with sensitive user and company data are switched or a while.

mand transferred to other operational regions until fixed.


ftware override is present (Accessible to bot controllers). case of software failure, a physical override switch is present ell.

Security Protocol

5.2.3

• Firewalls will be used to restrict access of data, automation systems and softwares will constantly be checking for suspicious activity under human supervision.

industry standard protocols at the time will be used for data transfer.

microchips that can be scanned to reveal information

• 'Checkpoints' and surveillance equipment are strategically located to clamp down on any possible malicious attempts.

Fig 5.2.3 [By Daniyal Ali on PowerPoint]

AUTOMATION DESIGN AND SERVICES

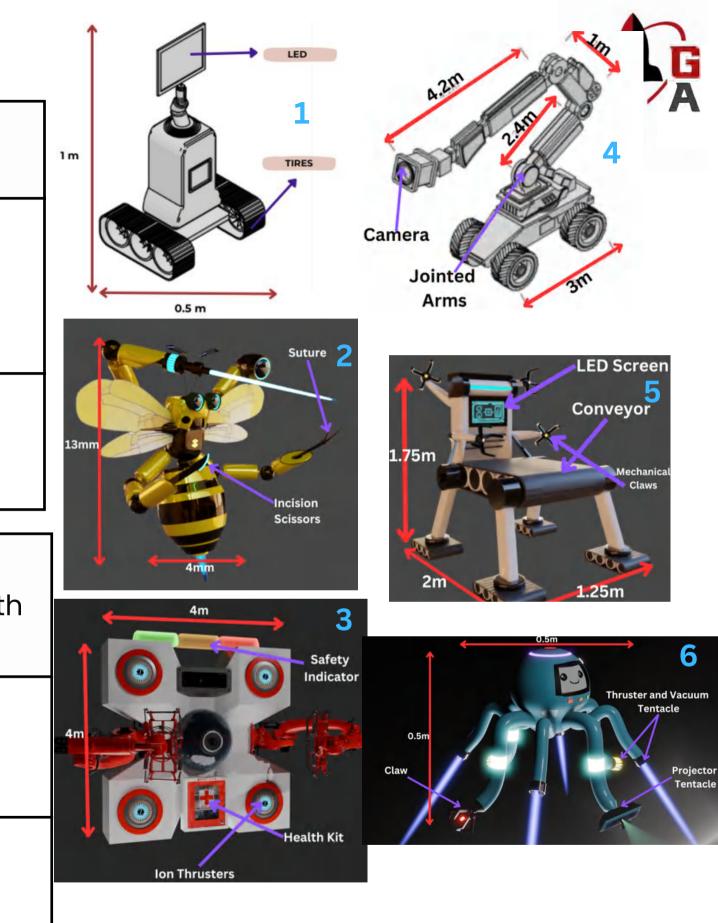
- Data will be encrypted using Advanced Encryption Standard (AES), and the
- Idem is an identification system for authorization, ID Cards are provided to all crew members with different permissions based on role. These cards contain

Livability Robots

1.Education Bot (200 units):

- BrainWave AI to deliver lessons.; Immersive experiences for efficient learning.
- 2. Health Bot (75 units):
 - Al diagnostics monitor health and delivers personalized care.; Provides medications, examinations, and emergency response.
- **3. Emergency Evacuation & Safety Bot (16 units):**
 - multi-jointed arms and ion propulsion help Navigates hazards; first aid and coordinates evacuations during emergencies.

4. Surveillance Robot (50 units):


• Monitors areas and quickly reports issues; Ensures smooth and safe operations with agile detection capabilities.

5. Maintenance Bot (Fixed-base, 35 units):

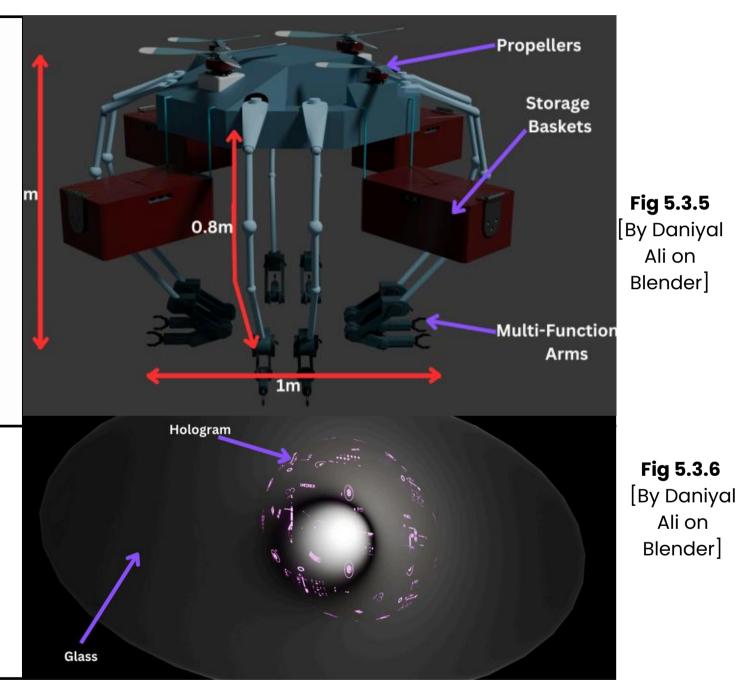
• real-time updates and detailed repairs with mechanical claws.;Streamlines maintenance tasks

6. Companion Octopus Bots (400 units):

• touch-sensitive design, pixel-art LED face, and emotionally responsive functions.;Handles practical tasks with sensor-equipped tentacles.

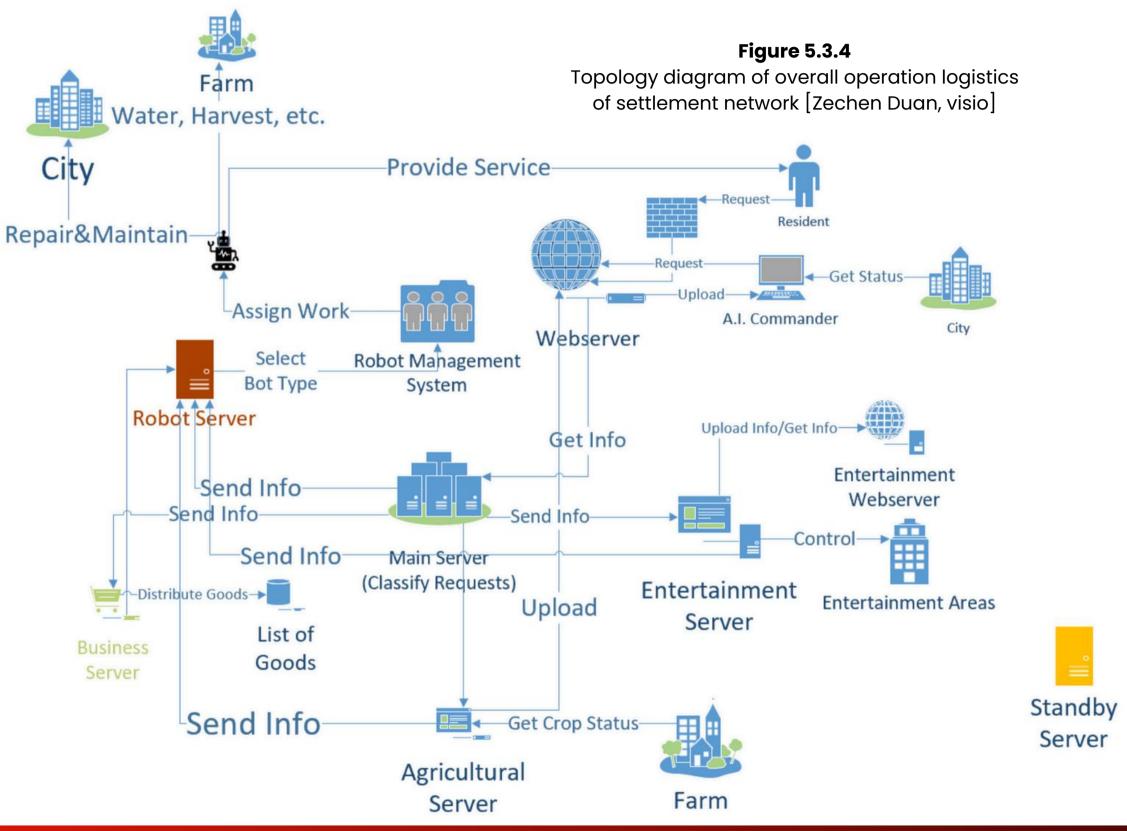
Livibility Robots

Agriculture Bot for Cultured Meat Production: (20 units)


- Equipped with **high-thrust propellers** and **multi-functional arms**, this bot ensures precise navigation, **scaffold handling**, and environmental monitoring. Sealed waste containers maintain sterility, while **electrical** pulses simulate physiological conditions for stem cell differentiation and 3D tissue growth.
- Operating autonomously in bioreactors and greenhouses, it optimizes cultured meat production through advanced automation and environmental control.

EyeLens: (4500 units)

- Augmented reality lens providing real-time notifications, navigation, and health metrics.
- Lightweight, **sleek design** with seamless smart device integration.


AUTOMATION DESIGN AND SERVICES

Overall Operation System: Maintenance, Repair, Failure Solution

AUTOMATION DESIGN AND SERVICES

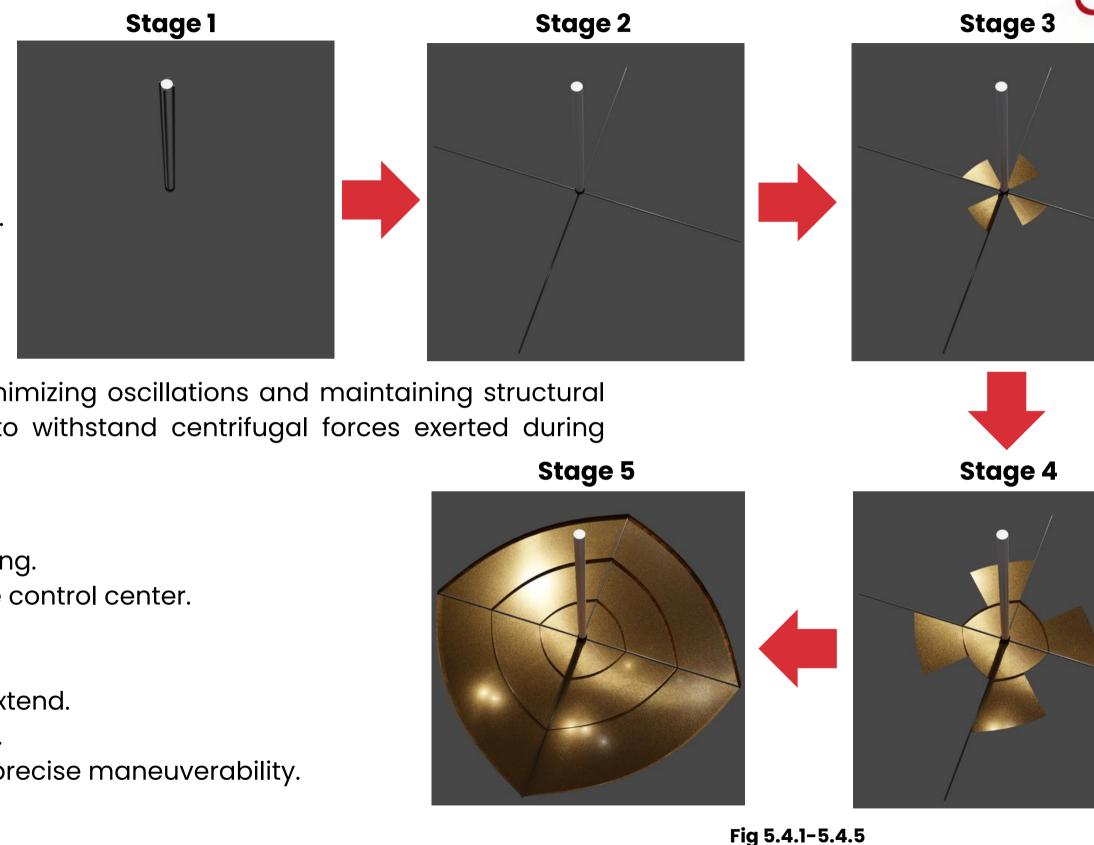
5.3.2

The central (main) server classifies requests from different servers of different areas (industry, agriculture, entertainment, etc.) and residents, it then allows residents to access different online resources. • The central server also assigns works based on requests to different types of robot.

There is also a standby server that takes over the job of the main server if any error occurs.

Access to Community Computing & Robot Resources

- Phase Change Memory (PCM) is used for storing high-priority data due to its high speed, durability, and non-volatility. Data retrieval involves applying voltage to PCM cells to measure resistance, identifying binary values based on whether the material is in an amorphous (0) or crystalline (1) state. This ensures efficient and reliable access to critical data.
- For low-priority data, **NAND Flash Memory** is chosen for its cost-effectiveness and high density. When a user requests data, the system locates it within NAND storage, and a controller facilitates retrieval and communication with the user's device.
- Robot resources are accessible through **AR/VR interfaces** or dedicated apps, enabling seamless interaction with automated systems. Security is maintained through **multi**factor authentication, Al monitoring, and firewalls, ensuring robust protection against unauthorized access and cyber threats.

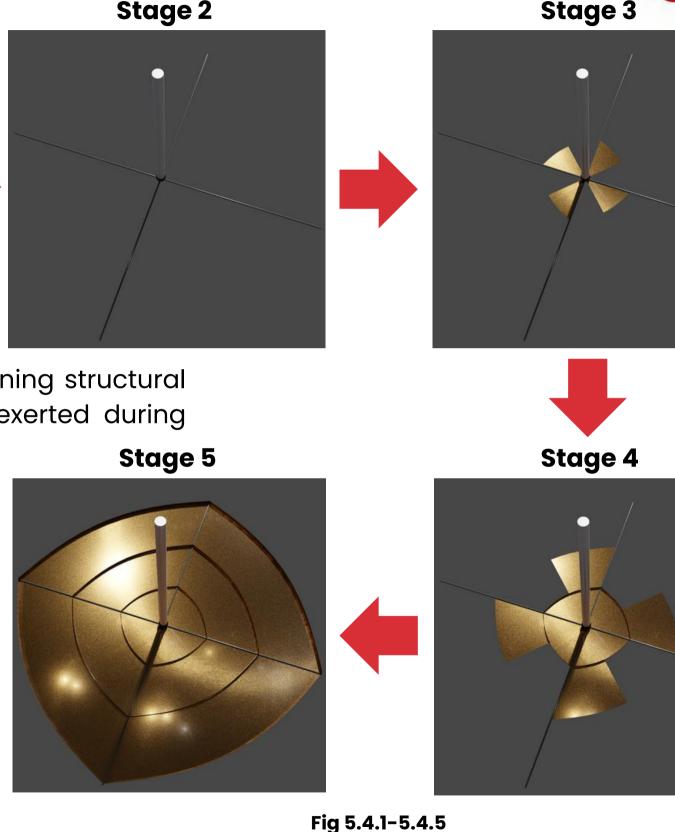


Solar Sail

Deployment and Stowage Process:

The solar sail unfolds in a controlled five-stage sequence:

- Stage 1: Rods folded, sail fully stowed.
- Stage 2: All 12 sub-sections closed, rods extended.
- Stage 3: Inner circle half open.
- **Stage 4:** Inner fully open, middle half open.
- Stage 5: Solar sail fully deployed.



Guide wires ensure stable, controlled extension, minimizing oscillations and maintaining structural integrity. The graphene sail material is designed to withstand centrifugal forces exerted during deployment.

Sail Trimming and Velocity Control:

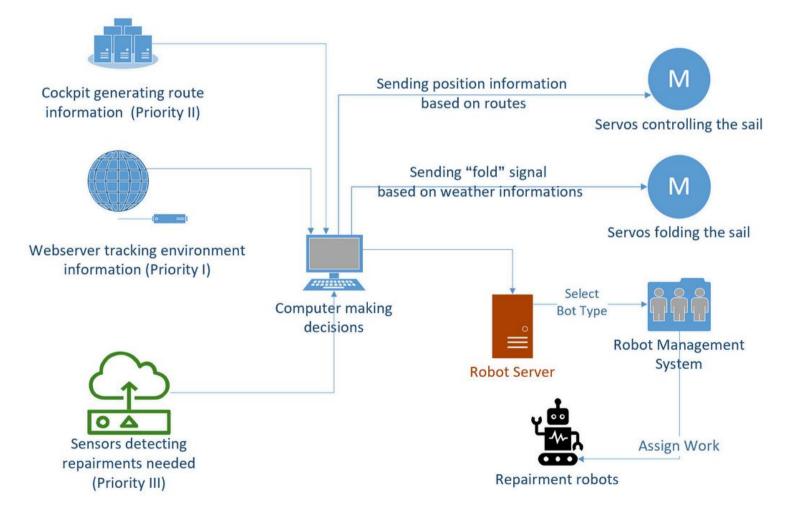
- 12 modular sub-sections allow for precise trimming.
- Gyroscopic and motion sensors relay data to the control center.
- Three-tiered velocity control:
 - Low Velocity: Inner circle extends.
 - Moderate Velocity: Inner and middle circles extend.
 - Maximum Velocity: All three circles fully open.

This system enables efficient thrust adjustments for precise maneuverability.

AUTOMATION DESIGN AND SERVICES

5.4.1

[By Abdullah Khan on Blender]



Solar Sail

5.4.2

- Motorized Deployment Mechanism: Motors in the central cylinder drive gears that sequentially deploy the three tiers smoothly. Guide wires ensure consistent speed, reduce mechanical stress, and keep the sail on track.
- Modular Repair Design: Only damaged sub-sections of the sail are replaced, preventing full system failure and making repairs more cost- and time-efficient.
- External Maintenance Bot: A specialized bot autonomously inspects and repairs damaged graphene sail sections, ensuring seamless functionality.

5.4.3 Solar Sail Operation System

- to the Sun for maximum propulsion efficiency.

AUTOMATION DESIGN AND SERVICES

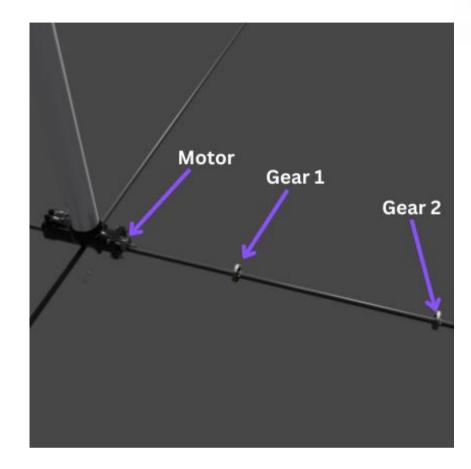
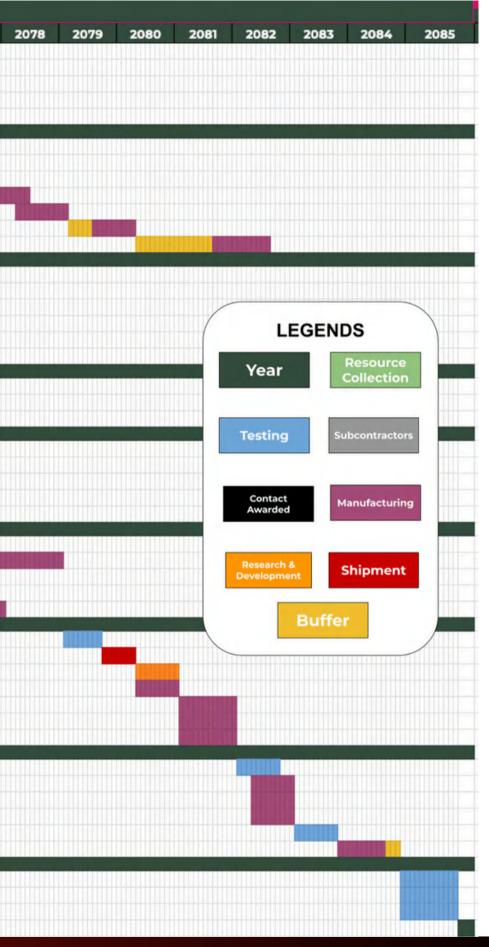


Fig 5.4.6 [By Abdullah Khan on Blender]

• Designed an operational logic to protect the solar sail from damage.

• Ensures the sail's angle adjusts based on the spacecraft's relative position

Includes a system to detect damage and deploy repair robots promptly.



Schedule

		Gantt Chart							
	TASKS	2070	2071	2072	2073	2074	2075	2076	2077
PRE-PHASE	Contract Awarded Hiring key Personnel and Training Research and Development Subcontrator Selection Resource Collection								
PHASE 1 (Design and Manufacturing)	Phase 0: Deploy Construction Shack at EML2. Phase 1: Build Central Shaft and install solar panels Phase 2: Construct docks and repurpose Control Center Phase 3: Establish Industrial Volume and manufacturing Phase 4: Build Residential Volume and start rotation (IOC) Phase 5: Deploy propulsion systems and move to Cycler orbit Phase 7: Add Zero-G Recreation Volume (FOC)								
PHASE 1 (Design and Manufacturing)	Developing Settlement Strcture Developin Automation systems Developing Solar Salis Research on silicate Aesteroids Final Design Specifications Manufacturing Solar Panels								
PHASE 2 (Collection of Materials)	Collection of Earth Materials Developing Space Shuttles Preparation of CASSSCs								
PHASE 3	Establishment of Construction Shacks Deployement of Construction Bots Jigs Latched on Establishment of the Elevator 3D Printing Systems Installation								
PHASE 4	Construction of Central Cylinders Construction of Central Axle and Thrusters Installation of Thrusters Construction of CASSSC Storage Space Construction of Bots Storage Space								
PHASE 6	Safety Check and Certification Benevectoras leaves Earth-Lunar L2 and enter Aldrin Mining Systems Setup on Asteroids Material Extraction and Processing from Asteroid belt/Mars Construction of Residential Structure Construction of Agricultural Structure Habitation of Humans on Settlement								
Internal Construction Phase	Pressurization and Airlocks Installation Construction of Recreational Dome Communication and Control Systems Resident Housing Safety and Security Establishment of Research Modules								
PHASE 8 (End Phase)	Quarantine and Health Checks Testing of Systems Safety Check and Certifications Settlement Fully Operational								

SCHEDULE AND COST

Sub Contractor & Operational Cost

Sub contractors

Cost for personnel, Interior construction and Operational system

Subcontractors	RFP point Contracted at
Buckystructure	4.3
Extreme Survival Technologies, Losless Aircosts	4.2
3D Logistics, Bottom Cleaners, Clean Up Your Act ,	
Electroprotect, Light Works, Nano Solutions, Orbit	
Link, Stuff of Life, Toss it to Me, Waste Products, Zap! Inudtsries	3.2
and a subscreep	
Drone & Delivery	5.1, 3.2
Bots4U, Brainwave AI	5.3
Blown Away	MRO
Buckybreakthroughs, Hard rolls, Tubular Tech	3.1
buckyoreakuroughs, marcrous, ruouar reen	2.4
Custom Cargo	3.1, 3.2
Guard Gizmo	3.2,5.3

Туре	Unit (\$/ Square	Area (m^2)	Cost (\$)
Residential Area	10500	269403	2828731500
Commercial Area	6300	27038	170339400
Fitness and Leisure area	7500	25282	189615000
Hospital	9000	15282	137538000
Machinery and support area	8000	3592	28736000
Server Room	19500	2000	3900000
Control Center	18000	800	1440000
Green Space and Public Transportation La	600	8100	486000
Agricultural Area	600	128571	77142600
Libraries	2500	1600	400000
Office Area	1500	30826	46239000
Industrial Area	2000	96106	192212000
Material Storage Area	1000	48010	4801000
Experimental Area	6500	13392	87048000
Port Area	3000	40178	120534000
Humar	resources allo	cation	
Туре	Number	salary per person (\$)	cost per year (\$)
Space Station Commander	5	500,000	2500000
Mission Control Officer	15	300,000	4500000
Aerospace Engineer	150	350,000	52500000
Life Support Systems Engineer	105	240,000	25200000
Scientist	130	280,000	36400000
Communications Specialist	80	230,000	18400000
Psychologist	70	200,000	1400000
Cybersecurity Specialist	120	310,000	37200000
Orbital Mechanics Expert	100	290,000	2900000
Recycling & Waste Management Expert	125	150,000	18750000
Power & Energy Engineer	100	290,000	2900000
	1000	3,140,000	267450000
g (By Harshprit)		Total	267450000

Table 6.1: Costing (By Harshprit)

SCHEDULE AND COST

Robot & System Cost

Cost for robots and materials

	Cost of Robots		
Type of Robots	Unit Price	Quantity	Total Price
Health Bot	300000	75	22500000
Construction Bot	500000	80	40000000
Agriculture Bot	300000	20	6000000
Companion Octopus	100000	400	4000000
Internal & External Construction Jig	150000	120	1800000
Surveillance Bot	100000	120	1200000
Construction Drones	500000	150	7500000
Evacuation Bot	25000	200	500000
Delivery Robot	50000	300	1500000
Fire Bot	50000	50	2500000
Jig Bot	350000	120	42000000
Servers	1000000	7	7000000
Computers (Type A)	5000	100	500000
Computers (Type B)	1000	2000	2000000
Firewall	500000	1	500000
Total	1	1	648000000

Cost of Materials							
Types	Surface Area (Square Meter)	Thickness (Meter)	Volume (Cubic Meter)	Density (Kilogram/Cubic Meter)	Mass (Kilogram)	Cost/Mass (\$/Kilogram)	Cost (\$)
Basalt Fiber	380332	0.03	11409.96	2600	29665896	3	88997688
Tunpsten-Tantalum-Titanium-Zirconium (W-Ta-Ti-ZrHEA)	380332	0.0625	23770.75	1000	23770750	250	5942687500
Graphene-Boron Doped Hydrogen Aerogel	380332	0.015	5704.98	20	114099.6	500	57049800
Silicon Bucky Structure	380332	0.05	19016.6	1350	25672410	500	12836205000
Gallium-Indium-Tin (EGalnSn)+Hydrogenated Ionic Liquid	380332	0.01	3803.32	3200	12170624	450	5476780800
Carbon Nanotubes	380332	0.025	9508.3	1300	12360790	550	6798434500
Water	380332	0.002	760.664	1000	760664	0.5	380332
Electro DynamicShield	20017	0.002	40.034	300	12010.2	300	3603060
Magnesium Aluminate Spinel(MgAL2O4)	20017	0.0625	1251.0625	3580	4478803.75	100	447880375
Boron-Doped Aluminum Oxynitride(AlON)	20017	0.015	300.255	500	150127.5	1000	150127500
Graphene-Reinforced Silica Aerogel	20017	0.035	700.595	100	70059.5	500	35029750
Electrochromic Glass	20017	0.045	900.765	2500	2251912.5	250	562978125
						TOTAL	32400154430

SCHEDULE AND COST

Cost for operational systems

Cost for operational system		
Туре	Cost(\$)	
Atmosphere	1822493573	
Weather Management	546748071.8	
Waste Management	6900000	
Water Resource Management	500000	
Power Ceneration and Storage	200000000	
Food Production	280000000	
Total	7181141644	

Initial CASSSC Loads (For first 6 months)				
Materials	Nos. Of CASSSC's			
Air	16754			
Water	187			
Food	119			
Non-edible Consumables	7			
Irniture and Non-Consumable Office Supplies	23			

Table 6.2: Robot and SystemCost[By Grady in excel]

Total Cost: \$46,788,151,747

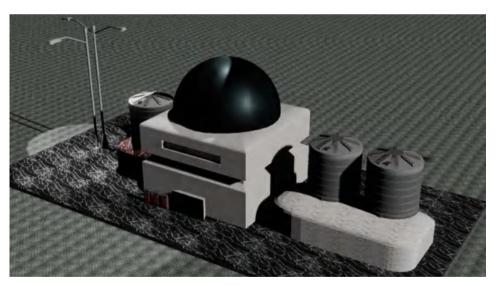
Passenger and Cargo Terminals

The figure below shows the layout of the spaceport, an intergalactic airport, serving as a hub for passengers and both the arrival and departure of ships in Benevectoras.

Facility	Description	docking adapter		
	compressors will be used to	Pressure stabilizer		
Pressure stabilizer	recreate pressure after docking latches close	Security scanning		
		Donning & doffing		
Cleansing	A chamber wherein plasma-based sanitizer sprays will and be used to cleanse passengers & equipment	Cleansing		
Zero-G Transition Modules	Safe and convenient transfer through docking adapter	Cargo transit storage		
Standard waiting area & Storage management area	In-port park for recreation. Perchlorate ATMs and usher bots for guidance. Cargo handling & loading/unloading areas.	+ management Cargo rail station Civil Arrival		

BUSINESS DEVELOPMENT

Departure


Figure 7.1: down surfaces of passenger and cargo terminal [By Adil Azfar]

47

Research and Development

The lab would consist of the following features:

- **1** Advanced Materials Division
- 2.3D Printing & Manufacturing Lab
- 3. Integrated AI & Automation systems powering the research on the materials in the lab

Figure 7–1–2 research facility [Abdullah khan]

Feature	Rotating (Artificial Gravity) Environment	Non-Rotating (Microgravity) Environment			
Product Types	Large structures, refining mineral ores	High-purity crystals, lightweight composite materials			
Reconfiguration Mechanism	Modular workstations that can switch processes based on demand	Adaptable lab environments powered by portable and adaptable construction bots (refer to 5.1)			
Benefits	Supports Earth-like manufacturing for scalable production, MODULAR CONVEYOR BELT WORKSTATIONS ARE RECONFIGURABLE AND PORTABLE				
Figure 7.2: modular workstation conveyor belt [By Daniyal Ali]					

BUSINESS DEVELOPMENT

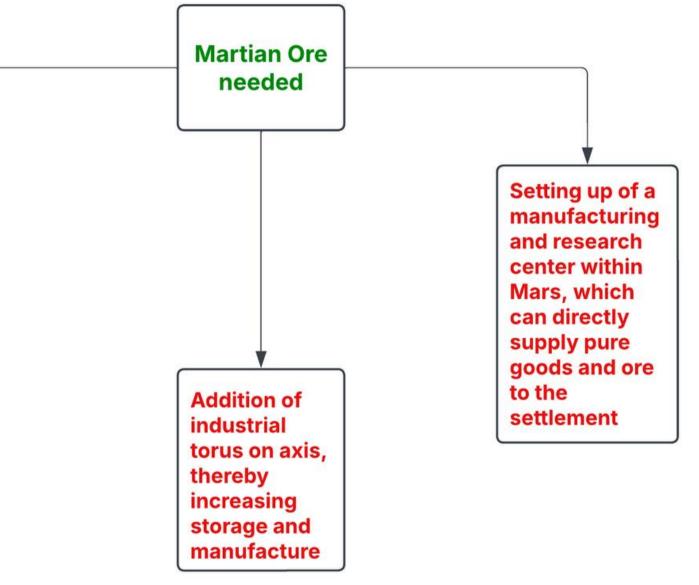
7.1.3 - 7.2.1

Martian Manufacturing

Future Transportation of Passengers

- Fusion Propulsion System is utilized for high-speed transport of passengers and cargo
- Smart Navigation & Safety Systems Equipped with autonomous piloting, obstacle detection, and emergency override features for safe and reliable operation.

Figure 7-1-4 Fusion pod ship [Daniyal Ali]


/anufac

Construction of an industrial hub port, which will also be in orbit with the settlement

BUSINESS DEVELOPMENT

7.2.1-2

In loving memory of the SSTS-107 Crew